torstai 1. huhtikuuta 2021

Donitsi kulhossa – Mitä konsentrisesti muokatut kraatterit ovat?

"Kun olet nähnyt yhden kraatterin, olet nähnyt ne kaikki.” Suunnilleen näillä sanoilla aikoinaan naljaili Venuksen vulkanotektonisiin rakenteisiin ja Marsin muinaisiin uomiin erikoistunut työkaverini – ja jatkoi satojen Marsin kraatterien tuijottamista tutkimusprojektissamme.

Kuten tässäkin blogissa olen useaan kertaan todennut, törmäyskraatterit ovat aurinkokuntamme ylivoimaisesti tyypillisin ja tärkein pinnanmuoto. Niitä on nähty kaikilla tarkemmin tutkituilla kiinteäpintaisilla kappaleilla Jupiterin jatkuvasti aktiivista Io-kuuta lukuun ottamatta. Ne myös esiintyvät kaikissa mittakaavoissa tuhansien kilometrien läpimittaisista planeettaa järkyttäneistä törmäysaltaista paljain silmin näkymättömiin mikrokraattereihin saakka. Kiistatta tähän joukkoon mahtuu melko monta jokseenkin paljon toisiaan muistuttavaa peruskraatteria.

Klassisten malja- ja kompleksikraatterien lisäksi on kuitenkin olemassa myös hyvin omalaatuisen näköisiä kraattereita. Tällaiset harvinaisemmat tapaukset kertovat yleensä jotain mielenkiintoista alueen kallioperän rakenteesta, koostumuksesta, tai sitä myöhemmin muokanneista geologisista prosesseista.

Kraattereita niiden synnyn jälkeen muokanneet prosessit olivatkin mielessäni, kun aamuyöllä 23.3.2021 vietin laatuaikaa kaukoputkeni ääressä. Vajaata paria vuorokautta myöhemmin Jari Kankaanpäällä oli sama kohde, Hesiodus A. Jarin iltapuhteen tuloksena oli alla oleva upea kuva.

Hesiodus A ympäristöineen Jari Kankaanpään Kauhavalla 24.3.2021 klo 22.40 12”:n putkella, 3x Barlow-linssillä, IR long pass -suotimella ja ASI 174mm -kameralla kuvaamana. Pohjoinen ylhäällä, kuten kaikissa kuvissa, ellei toisin mainita. Kuva: Jari Kankaanpää; osasuurennoksen muokkaus: T. Öhman.

 

Hesiodus A on varsin pieni kraatteri, vain noin 14-kilometrinen. Se sijaitsee Mare Nubiumin eli Pilvien meren etelärannalla. Kuun komeimpien hautavajoamien joukkoon kuuluva yli 330 km pitkä Rima Hesiodus lienee seudun merkittävin nähtävyys. Katsomisen arvoisia ovat myös alueen rakopohjaiset kraatterit, eli kulmikas Hesiodus ja etenkin satakilometrinen Pitatus. Molempien pohjat ovat tummien mare-basalttien peitossa. Hesioduksen lounaisreunalla sijaitseva Hesiodus A tuppaa jäämään näiden suurempien kohteiden varjoon.

Edellisen kuvan likimain kattama alue Mare Nubiumin etelärannalla Hesiodus A:n ympäristössä on merkitty suorakaide 1:llä. Muita jutussa mainittuja konsentrisesti muokattuja kraattereita melko satunnaisessa järjestyksessä: 2: Louville DA, 3: Repsold A, 4: Marth, 5: nimetön Humboldtissa, 6: nimetön Lavoisierissa, 7: Pontanus E, 8: Gruithuisen K. Kuva: Virtual Moon Atlas / LRO WAC / T. Öhman.

 

Hesiodus A:n sijainti. Kuva: NASA / ASU / LRO WAC / QuickMap / T. Öhman.

 

Hesiodus A on kuitenkin merkittävä kohde, sillä se on tunnetuin esimerkki erikoislaatuisesta pienten kraatterien ryhmästä. Niille ominaista on kraatterin sisäseinämän ja pohjan välissä oleva toinen, huomattavasti matalampi rengasrakenne. Hesiodus A:n tapauksessa tämän sisemmän renkaan halkaisija on noin 7 km. Hyvissä olosuhteissa ja parahultaisessa valaistuksessa sisemmän renkaan voi nähdä jo noin 11-senttisellä kaukoputkella, mutta kunnolla sitä pääsee katselemaan 15–20-senttisellä tai suuremmalla putkella silloin harvoin kun kelit sallivat.

Hesiodus A on sen verran pieni, ettei se vielä herättänyt 1800-luvun maineikkaiden ja tarkkasilmäisten saksalaisten ja englantilaisten kuuhavaitsijoiden mielenkiintoa. 1940-luvulla sen merkillinen muoto jo tunnettiin, mutta enemmälti siihen alettiin kiinnittää huomiota vasta kuuluotainten kuvien myötä 1960- ja 1970-luvuilla.

Hesiodus A Kaguya-luotaimen Terrain Cameran kuvaamana. Se on kaikkien konsentrisesti muokattujen kraatterien ja lisäksi niiden alaluokittelun T-tyypin malliesimerkki. Kuva: JAXA / Kaguya TC / NASA Moon Trek / T. Öhman.

 

Jos Internetistä etsii tietoa Hesiodus A:sta, löytyy edelleenkin lukuisista paikoista väitteitä, joiden mukaan kyseessä olisi kraatteri, jossa kaksi törmäyskraatteria on syntynyt täsmälleen samalle kohdalle. Tästä ajatuksesta on liikkeellä ainakin kahta eri versiota. Toisen mukaan kyseessä on puhdas sattuma, eli törmäyksillä ei olisi mitään tekemistä toistensa kanssa. Toisessa mallissa taas Kuun vuorovesivoimat olisivat repineet Kuuta lähestyneen melko hauraan kappaleen kahteen osaan juuri ennen sen törmäämistä, jolloin palaset olisivat osuneet samaan kohtaan, mutta toinen hitusen myöhemmin kuin ensimmäinen.

Hesiodus A tietokoneella luodussa viistokuvassa.
Kuva: NASA / ASU / LRO WAC / QuickMap / T. Öhman.
 
 

Kumpikin kaksoistörmäysidean versio on virheellinen. On hivenen merkillistä, että ajatus elää niin sitkeästi edelleen, vaikka kuka tahansa voi erinomaisten luotainkuvien avulla todeta, ettei Hesiodus A:n sisempi rengasrakenne näytä ollenkaan törmäyskraatterin reunalta. Ennemminkin Hesiodus A muistuttaa isoa donitsia tai suomalaisemmin munkkirinkilää jälkiruokakipossa.

Hesiodus A ja muut kaltaisensa tunnetaan englanniksi yleensä nimellä concentric crater. Se on melkoisen onneton nimivalinta, koska sitä nimeä käytettiin alkujaan 1960-luvun lopulla aivan toisella mekanismilla kerrokselliseen kohteeseen syntyneistä kraattereista. Ne myös näyttävät varsin erilaisilta. Vakiintuneita suomenkielisiä  nimiä näille ei ole, mutta Hesiodus A:n kaltaisia kraattereita voisi kutsua vaikkapa konsentrisesti muokatuiksi kraattereiksi, sillä siitä niissä on kyse.

Länsi–itä-suuntainen korkeusprofiili Hesiodus A:n poikki. Yläkuvan sininen viiva osoittaa profiilin sijainnin LRO WAC -kuvassa, punaiset viivat ovat korkeuskäyriä. Alakuvan y-akseli kuvaa korkeutta metreinä. Kuva: NASA / ASU / LRO WAC / T. Öhman. Korkeusdata: SLDEM2015.

 

1970-luvulla ansioituneet kuututkijat Pete Schultz ja Chuck Wood olivat tahoillaan jo oikeilla jäljillä arvellessaan, että Hesiodus A ja muut sen kaltaiset kraatterit olisivat tuliperäisten voimien muokkaamia. Schultz arveli muiden mahdollisuuksien ohella, että kyseessä voisi kenties olla tuliperäinen tuhkarengas. Wood puolestaan esitti, että sisemmän renkaan olisi voinut aiheuttaa hyvin sitkeä tai erittäin hitaasti purkautunut laava. Wood myös laati luettelon 51:stä konsentrisesti muokatusta kraatterista.

Seuraavina vuosikymmeninä konsentrisesti muokattuja kraattereita tutkittiin aina silloin tällöin. Järin suosittu tutkimuskohde ne eivät kuitenkaan koskaan ole olleet, eikä lopullista selvyyttä niiden synnystä ja olemuksesta näissä tutkimuksissa saatu. Vuonna 2016 Havaijin yliopiston geofysiikan ja planetologian instituutissa työskentelevä David Trang kollegoineen julkaisi tähän mennessä kattavimman tutkimuksen Kuun konsentrisesti muokatuista kraattereista.1 Se tarjoaa vastauksia moneen keskeisimpään kysymykseen.

Trang ja kumppanit löysivät Kuusta 114 konsentrisesti muokattua kraatteria. Niillä on viisi keskeistä ominaispiirrettä:

  1. kraatterin reunan sisäpuolella oleva reunaan nähden konsentrinen harjanne
  2. poikkeuksellisen vähäinen syvyys
  3. sijainti lähellä mare-alueita tai pienempiä mare-läiskiä, mutta ei yleensä niiden keskellä
  4. konsentrinen harjanne koostuu samasta materiaalista kuin ympäristö
  5.  eratostheeninen tai sitä vanhempi, yleensä imbrinen ikä, ei koskaan kopernikaaninen

Tämän lisäksi konsentrisesti muokatut kraatterit ovat varsin pieniä. Suurin on halkaisijaltaan hieman alle 28 km, mutta useimmiten konsentrisesti muokatut kraatterit ovat alle 15-kilometrisiä. 80 % niistä on korkeintaan 60 km:n päässä jonkun mare-tasangon reunasta (eli meren rannasta). Monet esiintyvät lisäksi rakopohjaisten kraatterien sisällä tai lähistöllä. Esimerkiksi Humboldtista ja Lavoisierista löytyy oikein kauniit konsentrisesti muokatut kraatterit. Huomattavin poikkeus on 13-kilometrinen Pontanus E, joka sijaitsee syvällä kraatteroituneilla ylängöillä kaukana meristä.

Lunar Reconnaissance Orbiter -luotaimen WAC-kuvista tehty mosaiikki rakopohjaisesta Humboldt-kraatterista, osasuurennoksessa NAC-kuva Humboldtin nimettömästä hyvin kauniista T-tyypin konsentrisesti muokatusta kraatterista. Kuva: NASA / ASU / LRO WAC & NAC / T. Öhman.
Lavoisier on Humboldtin tapaan suuri rakopohjainen kraatteri, jonka pohjalla on komea, osasuurennoksessa paremmin näkyvä nimetön 5,4-kilometrinen T-tyypin konsentrisesti muokattu kraatteri. Kuva: NASA / ASU / LRO WAC & NAC / QuickMap / T. Öhman.
Noin 13-kilometrinen T-tyyppinen Pontanus E on suuri harvinaisuus konsentrisesti muokattujen kraatterien joukossa, sillä se ei sijaitse meren rannalla tai suuressa rakopohjaisessa ja osin basalttien täyttämässä kraatterissa, vaan keskellä ylänköaluetta. Kuva: JAXA / Kaguya TC / NASA Moon Trek / T. Öhman. 

 

Hyvä esimerkki konsentrisesti muokattujen kraatterien mataluudesta on lähes 11-kilometrinen Louville DA. Se sijaitsee aivan liki seitsenkilometrisen Louville D:n vieressä. Alkujaan Louville DA:n olisi pitänyt olla yli 700 m syvempi kuin Louville D. Sen sijaan se on noin kilometrin matalampi. Tällainen ero ei mitenkään selity pelkästään sillä, että Louville DA on kraattereista vanhempi. Jonkin prosessin on täytynyt nostaa kraatterin pohjaa, mutta jättää sen reuna rauhaan.

 

Louville D on tavallinen nuori heittelekentän ympäröimä maljakraatteri, läpimitaltaan noin 6,9 km. Louville DA puolestaan on konsentrisesti muokattu ja vanhempi, sekä läpimitaltaan hieman suurempi, noin 10,8-kilometrinen. Louville DA on alkujaan ollut luultavasti yli 700 m syvempi kuin Louville D, mutta on muokkautumisensa vuoksi nyt noin kilometrin matalampi kuin Louville D. Louville DA:ssa on nähtävissä kaksikin konsentrista rengasta. Ulompi on lähinnä  M-tyyppiä, sisempi B-tyyppiä, jonka mukaan koko kraatteri on luokiteltu. Yläkuvan keltainen viiva osoittaa alakuvassa esitetyn korkeusprofiilin sijainnin. Kuva: JAXA / Kaguya TC / NASA Moon Trek / T. Öhman; Korkeusdata: LRO LOLA.

 

Trangin ja kollegoiden tutkimuksessa konsentrisesti muokatut kraatterit jaettiin kolmeen luokkaan konsentrisen harjanteen muodon mukaan. Tyypillisin on Hesiodus A:n tapainen donitsimainen, tasainen rengas emäkraatterin pohjalla. Harjanteen ja emäkraatterin sisäseinämän välissä on v-muotoinen laakso. Tämä tyyppi sai nimen toroid. Bulbous-tyyppi on muutoin edellisen kaltainen, mutta kraatterin keskeltä harjanteen poikki ulottuu säteittäisiä painanteita.

Kolmannessa, meniscus-tyypissä ei ole donitsimaista rinkulaa. Sen sijaan tällainen kraatteri näyttää siltä, että isomman kulhon sisään on laitettu pienempi, hyvin laakea kulho. Suomenkielisiä nimiä eri tyypeille ei ole, joten niitä voi paremman puutteessa kutsua sujuvasti vaikka T-, B- ja M-tyypin konsentrisesti muokatuiksi kraattereiksi.

M-tyypin konsentrisesti muokattu kraatteri Repsold A Kaguya-luotaimen Terrain Cameran kuvaamana. Kuva: JAXA / Kaguya TC / NASA Moon Trek / T. Öhman.

 

Joillain kraattereilla konsentrisia harjanteita on yhden sijaan kaksi. Tällaisia ovat vaikkapa Louville DA ja Gruithuisen K. Molemmilla renkaat ovat myös eri tyyppejä. Louville DA:lla ulompi on lähinnä  M-tyyppiä, sisempi B-tyyppiä. Gruithuisen K:lla ulompi on B-tyyppiä, mutta Gruithuisen K kuitenkin luokitellaan sisemmän harjanteen perusteella T-tyypin kraatteriksi.

Kuusikilometrinen Gruithuisen K on Louville DA:n tapaan poikkeuksellinen konsentrisesti muokattu kraatteri, sillä siinä on kaksi konsentrista harjannetta. Näistä ulompi on B-tyyppiä, mutta Gruithuisen K kuitenkin luokitellaan sisemmän harjanteen perusteella T-tyypin kraatteriksi. Vasemmassa yläkulmassa mosaiikin valaistussuunta vaihtuu. Kuva: NASA / ASU / LRO NAC / QuickMap / T. Öhman.

 

Trangin vetämän tutkimuksen perusteella ainoa mekanismi, joka pystyy selittämään kaikki havaitut piirteet, on magmaattinen intruusio. Heidän mallinsa mukaan kraatterin pohjan alapuolisia rakoja pitkin kohosi magmaa. Se ei kuitenkaan päässyt purkautumaan laavana pinnalle asti, vaan ainoastaan kohotti kraatterin pohjaa. Konsentrisesti muokkautuneita kraattereita ei esiinny merten keskiosissa, koska siellä mahdollisesti syntyneet kraatterit hautautuivat myöhempien mare-basalttien alle.

Konsentrisesti muokatut kraatterit ja rakopohjaiset kraatterit ovat Trangin ryhmän mukaan hyvin läheistä sukua toisilleen. Molemmat syntyvät magmaattisen intruusion pullistaessa kraatterin pohjaa. Alle 15-kilometriset maljakraatterit muuttuivat konsentrisesti muokatuiksi, mutta yli 15-kilometrisistä kompleksikraattereista tuli rakopohjaisia kraattereita.

Eräs ilmeinen asia, johon ei Trangin tutkimuksessa suoranaisesti otettu kantaa, on konsentrisesti muokattujen kraatterien harjanteen muoto ja sijainti. Miksi magmaintruusio siis synnyttää maljakraattereissa munkkirinkilän, mutta kompleksikraattereissa keskeltä pömpöttävän rakopohjaisen kraatterin? Yksi mahdollisuus renkaan synnyksi saattaisi liittyä siihen, että kraatterin pohjalla sijaitseva törmäyssulakivestä koostuva linssi on paksuimmillaan kraatterin keskellä. Se voisi muodostaa alta työntyvälle magmalle läpitunkemattoman esteen. Pohjan taittuessa kraatterin sisäseinämäksi törmäyssula ohenee ja lopulta katoaa, mahdollistaen magman kohoamisen lähemmäksi pintaa ja sen myötä rengasmaisesti kohoavan pohjan synnyn. Muitakin mahdollisuuksia renkaan muodostumiselle varmasti on. Syitä eri tyyppisten konsentristen harjanteiden synnyllekään ei toistaiseksi tiedetä.

Konsentrisesti muokatut kraatterit ovat siis Kuussa harvinainen ja kiehtova törmäyskraatterityyppi. Mielenkiintoista on, että toistaiseksi varmoja tapauksia ei tunneta mistään muualta kuin Kuusta. Marsista ei vastaavia ole tiettävästi löydetty, ja Merkuriuksen pinnalta Trangin ryhmä löysi alustavissa etsinnöissään yhden(!) kandidaatin. Tarkemmissa tutkimuksissa niitä toki voi löytyä lisääkin, mutta vaikuttaa kuitenkin hyvin vahvasti siltä, että ne ovat leimallisesti juuri Kuussa ja nimenomaan sen lähipuolella esiintyvä kraatterityyppi. Tässäkin mielessä meitä Maan asukkaita on lykästänyt.

Kuuhavaitsijan kannalta Hesiodus A on varmastikin helpoin konsentrisesti muokattu kraatteri, mutta muitakin on tarjolla. Hesiodus A:n länsipuolella Palus Epidemiarumissa eli Kulkutautien suolla oleva Marth kuuluu näistä helpoimmin havaittaviin. Se on sikälikin kiehtova tapaus, että se rikkoo yhtä konsentrisesti muokattujen kraatterien pääsääntöä vastaan: se koostuu ylänköaineksesta, kun ympärillä on mare-basaltteja. Tässä ei kuitenkaan ole mitään varsinaisesti kummallista, sillä suolla basaltit ovat niin ohuita, että kraatteri syntyi lähes kokonaan basalttien alla oleviin ylänköaineksen vaaleisiin kiviin.

Jos siis Kuun katseleminen kiinnostaa, käytössä on mielellään pikkuruista hieman suurempi kaukoputki, ja kaipaa vähän eksoottisempia havaintokohteita, voi vaihtelun vuoksi yrittää konsentrisesti muokattujen kraatterien havaitsemista. Konsentristen harjanteiden näkemisessä omin silmin tai niiden kuvaamisessa riittää nimittäin haastetta hieman enemmänkin Kuuta havainneille. Kannattaa käyttää loppukevään kirkkaat yöt hyväksi ja ainakin kokeilla.

Viistokuva Kuun etäpuolella Apollon törmäysaltaassa sijaitsevasta T-tyypin 11,8-kilometrisestä kaksi konsentrista harjannetta sisältävästä kraatterista. Pohjoinen vasemmalla. Kuva: NASA / GSFC / Arizona State University / LRO NAC M1097537923L & R.  
 
 

perjantai 26. helmikuuta 2021

Alabamasta Kuun karttoihin

Internetistä löytyy roppakaupalla huijarifirmoja, joilta voi ostaa kalliin paperinpalan, jolla pystyy ”todistamaan” juuri hankkineensa tontin Kuusta tai Marsista. Vastaavanlaisen ”sertifikaatin” avulla voi myös ”osoittaa” nimenneensä tähden traagisesti kuolleen rakkaan lemmikkihamsterin muistoksi. Firmoja on niin paljon, että kaiketi höynäytettäviksi haluavia ihmisiä riittää kannattavaa bisnestä varten.

Todellisuudessa tietenkään kukaan ei ainakaan toistaiseksi voi ostaa tai myydä mökkitonttia titanilaisen järven rannalta, ja ainoa taho, joka voi virallisesti nimetä tähtiä tai taivaankappaleiden pinnanmuotoja, on kansainvälinen tähtitieteellinen unioni IAU. Jotta esimerkiksi Kuun virallisiin karttoihin saa oman nimensä, pitää ensinnäkin yleensä olla kuolleena vähintään kolme vuotta. Toisekseen olisi hyvä olla kansainvälisesti tunnettu tutkimusmatkailija tai mielellään kuu- tai planeettatutkimuksen parissa työskennellyt tutkija tai insinööri. Vaikkapa sellainen kuin Annie Easley.

 

Matemaatikko, ohjelmoija ja vähemmistöjen puolustaja

Annie Jean Easley (1933–2011) kasvoi Yhdysvaltain syvässä etelässä, Alabaman Birminghamissa mustan yksinhuoltajaäidin perheessä. Birmingham tunnetaan väkivaltaisesta rasismista etenkin 1950–1960-luvuilla, samoin kuin mustien kansalaisoikeustaistelun yhtenä keskeisimpänä tapahtumapaikkana. Birminghamissä 1900-luvun ensimmäisellä puoliskolla mustan naisen lähtökohdat onnelliselle elämälle ylipäätään saati sitten ansiokkaalle teknis-tieteelliselle uralle eivät siis olleet helpoimmat mahdolliset. Easleyn äiti kuitenkin korosti lapsilleen aina, että koulutus tarjoaisi tien parempaan.

Annie Easley opiskeli New Orleansissa Xavierin yliopistossa pari vuotta farmasiaa. Opiskelut kuitenkin jäivät, kun hän meni ennen valmistumistaan naimisiin ja muutti kotirouvaksi pohjoiseen Erie-järven rannalle Ohion Clevelandiin.

Eräänä päivänä hän luki lehtiartikkelin NASAn edeltäjän NACAn (National Advisory Committee for Aeronautics) Lewisin tutkimuskeskuksen eli nykyisen Glennin tutkimuskeskuksen laskijan eli computerin töitä tehneistä kaksossisarista. Artikkelista innostuneena matemaattisesti lahjakas Easley päätti hylätä ajatukset farmasiasta lopullisesti ja pyrkiä NACAlle töihin. Hänen lahjakkuutensa ei jäänyt huomaamatta, joten hän aloitti NACAlla vuonna 1955, pari viikkoa lehtijutun lukemisen jälkeen.  Eläkkeelle Annie Easley jäi NASAsta vuonna 1989.

Annie Easley Lewisin tutkimuskeskuksessa vuonna 1981. Kuva: NASA.
 

Pahimmillaan Annie Easley sensuroitiin NASAn PR-kuvista 
pois, mutta vuonna 1981 hän pääsi jo NASAn julkaisun 
kansikuvaankin. Erilaisia NASAn kunnianosoituksia 
hänelle myönnettiin ainakin vuodesta 1970 alkaen. 
Kuva: NASA.
Easleyn lasku- ja myöhemmin myös ohjelmointitaitoa tarvittiin yli kolmen vuosikymmenen aikana mitä moninaisimmissa projekteissa. Hänen kykyjään hyödynnettiin ydinreaktorisimulaatioista ja varhaisiin hybridiautoihin käytetystä akku- ja energiatekniikasta Centaur-rakettiin. Sen varhaisessa ohjelmistokehittelyssä Easley oli keskeisessä asemassa. Centaur on ollut NASAn rakettien luotettava työjuhta halki vuosikymmenten: se on ollut ylimpänä rakettivaiheena mm. Surveyor-, Mariner-, Pioneer-, Viking-, Voyager- ja Cassini-luotaimille. Osittain Annie Easleyn ansiosta edelleenkin valmistettavan Centaurin avulla on siis päästy tutkimaan aurinkokuntamme planeettoja Merkuriuksesta Neptunukseen saakka.

1950–60-luvuilla Lewisin tutkimuskeskuksessa Easley muodosti mustana naisena todella pienen vähemmistön. Kun hänet palkattiin, keskuksessa oli töissä hänen lisäkseen kolme mustaa amerikkalaista. Omien sanojensa mukaan hän oli vähemmän kuin vähemmistö.* Sen hän sai myös kokea karulla tavalla. Tutkimuskeskuksen PR-kuvista hänet aluksi rajattiin pois. Ja vaikka NASAn olisi pitänyt tukea työssä kouluttautumista taloudellisesti, Easley joutui maksamaan matematiikan kandidaattiopintonsa itse, toisin kuin hänen miespuoliset valkoiset kollegansa. Hän valmistui työnsä ohessa Cleveland State Universitystä vuonna 1977.

Varsinaisen laskenta- ja ohjelmointityönsä lisäksi Easley toimi Lewisissa tasa-arvon puolestapuhujana ja tukihenkilönä rotu-, sukupuoli- ja ikäsyrjintää vastaan. Hän kiersi myös runsaasti yliopistoja ja kouluja NASAn rekrytointitilaisuuksissa puhumassa tiedeaineiden ja äidinkielen opiskelun tärkeydestä.


Annie Easley ja UNIVAC 1100/40 -tietokone vuonna 1976. Kuva: NASA.

 

Easley toimi Lewisin tutkimuskeskuksen laskettelukerhon 
ja sittemmin koko varsin lättänän Clevelandin 
laskettelukerhon puheenjohtajana. Kuva: NASA.
Kuluvan helmikuun alussa Kuun nimistöstä vastaava IAU:n työryhmä vahvisti Kuun kaakkoisella libraatiovyöhykkeellä sijaitsevan yhdeksänkilometrisen kraatterin nimeksi Easley. Käytännössä Kuun pinnanmuotoja nimetään nykyisin enimmäkseen vain tarpeeseen. Tällaisia tarpeita ovat uudet laskeutumisalueet, sekä tieteellinen tutkimus. 

Koska mikään alus ei ainakaan toistaiseksi ole laskeutunut Easleyn tuntumaan, joku tutkija jossain päin maailmaa on luultavasti tällä hetkellä kiinnostunut Easleysta tai sen ympäristöstä. Millainen monttu Easley sitten on?

Easley havaintokohteena ja kraatterina

Easley (87,97° itäistä pituutta, 23,69° eteläistä leveyttä) sijaitsee niukin naukin Kuun lähipuolella. Yhdeksänkilometrisenä se on periaatteessa harrastajien havaittavissa kohtalaisen pienilläkin kaukoputkilla. Käytännössä ongelmaksi muodostuu, että Easleyä joutuu katselemaan melkoisen sivusta. Näin ollen pienen kraatterin tunnistaminen ei ole mikään yksinkertainen tehtävä.

 

Easley sijaitsee Kuun kaakkoisella libraatiovyöhykkeellä Humboldtin koillispuolella. Kuva: Virtual Moon Atlas / LRO WAC / T. Öhman.   
Easleyn yleispiirteinen etsintäkartta, pohjoinen ylhäällä. Easley on niin syvällä Kuun kaakkoisella libraatiovyöhykkeellä, että Maasta katsottuna se nähdään lähes sivusta. Näin ollen sen löytäminen pienehköllä kaukoputkella ei ole ihan yksinkertainen tehtävä edes suotuisan libraation aikaan. Etsintä kannattaa aloittaa Petaviuksesta. Humboldtin koillisreunalta Schorr A:n länsipuolelle ulottuu selvin Humboldtin heitteleen kaivertamista uurroksista, Catena Humboldt. Kuva: NASA / ASU / LRO WAC / QuickMap / T. Öhman.

 

Kun Easleyä lähtee etsimään – mieluiten suotuisan libraation aikaan, sillä muuten homma menee liki mahdottomaksi – kannattanee aloittaa helposti tunnistettavasta Petaviuksesta ja paikallistaa sitten huikea Humboldt. Easley sijaitsee Humboldtista koilliseen sen heittelekentän päällä. Etsinnän apuna voi käyttää oheista Oskari Syynimaan upeaa kuvaa heinäkuulta 2018.

Tämä kuva ei ole otettu Kuun kiertoradalta, vaan kyseessä on Oskari Syynimaan kauniista, Kauhavan päivätaivaalta 16.7.2018 otetusta alkuperäiskuvasta rajattu ja hieman muokattu näkymä Humboldtiin ja Easleyyn. Pohjoinen on kuvassa vasemmalla. Kuva: Oskari Syynimaa, laitteistona Sky-Watcher Skyliner 350P Flextube -kaukoputki, ASI290MM-kamera, Astronomik ProPlanet 807 IR-pass -suodatin ja 2x Barlow.

 

Tämä kuva sen sijaan on Kuun kiertoradalta, eli Humboldt (yläoikealla) ja Easley (keskeltä hieman alavasemmalle) Apollo 15:n komentomodulista kuvattuna heinäkuussa 1971. Humboldtin heittelekenttä ja Easleyyn ulottuva uurros erottuvat hyvin. Pohjoinen alaoikealla. Kuva hieman rajattu alkuperäisestä: NASA / Apollo 15 / LPI / AS15-M-2509.


Apollo 14:n kuvassa viidenkymmenen vuoden takaa helmikuulta 1971 Easley näkyy keskikohdasta hieman ylävasemmalle. Vasemmalla vanhan Gibbsin kraatterin reunalle syntynyt erittäin kirkkaan heittelekentän ympäröimä hyvin nuori pinii kraatteri on edelleen nimetön. Pohjoinen alavasemmalla. Kuva rajattu alkuperäisestä: NASA / Apollo 14 / LPI / AS14-71-9878.

Kuten jo oheisista luotain- ja Apollo-kuvista samoin kuin Oskarin valokuvasta näkee, Easleya ympäröi kirkas heittelekenttä. Sellainen on Kuun nuorimpien, kopernikaanisella kaudella syntyneiden kraatterien tunnusmerkki. Vielä paremmin Easleyn heittelekenttä ja säteet erottuvat LRO-luotaimen kuvassa, joka on otettu Auringon paistaessa suoraan luotaimen takaa, jolloin pinnalle ei muodostu lainkaan varjoja. Heittelekentässä on viitteitä siitä, että törmäys olisi tapahtunut etelästä melko loivalla kulmalla.

Muutoin heittelekenttä näyttää melko normaalilta, mutta Easleystä länsilounaaseen lähtee omituisen pitkä, noin 70-kilometrinen säde. Luotain- ja Apollo-kuvista käy ilmi, että se seurailee lähes täysin Humboldtin heitteleen synnyttämää uurrosta. Muut Humboldtin uurrokset, esimerkiksi Catena Humboldt, eivät kirkkaina näy, eivätkä muut Easleyn säteet ole likikään näin pitkiä ja selväpiirteisiä. Hakemattakin herää ajatus, että tässä olisi kyseessä syy ja seuraus, mutta mitenkään varmaa tuo ei ole. Ja vaikka asiat kytkeytyisivätkin toisiinsa, ei varsinaisesta mekanismista voi esittää kuin arvauksia, sillä tällaista vanhemman uurroksen ja nuoren säteen yhteenliittymää ei liene koskaan tarkemmin tutkittu.

Hieman kontrastiltaan vahvistetussa täysikuuta vastaavan valaistuksen aikaan otetussa LRO-luotaimen kuvamosaiikissa Easleyn kirkas heittelekenttä ja etenkin pitkälle länsilounaaseen ulottuva eriskummallinen säde erottuvat hyvin. Kuva: NASA / ASU / LRO WAC / QuickMap / T. Öhman.

 

Lähikuvamosaiikki Easleystä edellistä kuvaa vastaavissa valaistusolosuhteissa. Pohjan törmäyssulakivi näkyy tummana, pitkin jyrkkiä sisäreunoja vyörynyt aines puolestaan vaaleana. Kuva: NASA / ASU / LRO NAC / QuickMap / T. Öhman.

 

Easley Kaguya/SELENE-luotaimen terrain cameran kuvaamana. Kuva: JAXA / Kaguya/SELENE / TC / NASA-JPL MoonTrek / T. Öhman.
 
 

Easleyn nuoruudesta kertoo myös sen melkoisen hyvin säilynyt törmäyssulakivikerros. Kun vanhoja kraattereita katselee täydenkuun valossa, ei reunojen sisäosilla ja pohjalla ole juuri minkäänlaista sävyeroa. Easleyllä kontrasti kirkkaiden reunojen ja tumman törmäyssulakivipohjan välillä puolestaan on selkeä. Ja kun pohjaa katselee vielä tarkemmin, näkyy paikoin törmäyssulan jäähtyessä syntyneitä rakoja. Ne tapaavat pienistä kraattereista kadota eroosion myötä varsin nopeasti. Easley on siis selvästi nuori ja nätti, mutta ei silti kokoluokkansa kaikkein tuoreimpia edustajia.

  

Easleyn läntisen sisäreunan ja tasaisen, törmäyssulakiven peittämän pohjan taitekohta. Törmäyssulakiviesiintymän reunamilla sulakerroksen vain ohuelti peittämissä epätasaisemmissa kohdissa näkyy pari rakoa. Tällaiset jäähtymisraot kertovat kraatterin nuoruudesta, sillä vanhemmista kraattereista ne ovat meteoriittipommituksen ja lämpörapautumisen myötä kuluneet näkymättömiin. Kuva: NASA / ASU / LRO NAC / QuickMap / T. Öhman.

Vaikka Easley näyttää kuvissa kauniin symmetriseltä pyöreähköltä maljakraatterilta, sen topografia yllättää. Easleyn itäinen ja läntinen reuna ovat noin 500–1000 m korkeammalla kuin eteläinen ja pohjoinen. Läpimitaltaan yhdeksänkilometrisessä kraatterissa ero on merkittävä. Ero johtuu siitä, että Easley sattui osumaan kapeahkolle Humboldtin ja Curien väliselle korkealle kannakselle. Sen seurauksena Easleyn reunan muoto on hieman satulamainen.

Easley nähtynä luoteesta. Kraatteri syntyi kapealle kannakselle, mikä johti hieman satulamaiseen reunan muotoon. Reunan ulkopuolella kuvan etualalla painanteessa näkyvä tasaisempi ja hieman tummempi alue on kraatterista ulos lentäneen törmäyssulan muodostama lampare, nyttemmin tietysti törmäyssulakiveksi jähmettynyt. Sen sijaintiin on matalamman pohjoisreunan lisäksi saattanut vaikuttaa loivakulmainen törmäys etelästä. Kraatterin pohja on vastaavan törmäyssulakiven peitossa. Kuva: NASA / ASU / LRO NAC / QuickMap / T. Öhman.
Easleyn ympäristön topografinen kartta. Matalimpien sinivihreiden ja korkeimpien punaruskeiden alueiden välinen korkeusero on noin 4,7 km. Kuva: NASA / ASU / LRO WAC / GLD100 / QuickMap / T. Öhman.


Easleyn epäsymmetrinen muoto käy ehkä selvimmin esille topografisista profiileista, joiden paikat on esitetty alemmassa kuvassa. Yläkuvassa punaisella käyrällä on kuvattu topografinen profiili lännestä itään, sinisellä puolestaan etelästä pohjoiseen. Pystyakselilla korkeus Kuun vertailutasosta metreinä, vaaka-akselilla etäisyys pitkin profiilia kilometreinä. Kuva: NASA / ASU / LRO WAC / QuickMap / T. Öhman. Korkeusaineisto: SLDEM2015.

Jos törmäyskraattereista pitää, ei voi olla viehättymästä Easleystä. Siinä on monia klassisen törmäyskraatterin kauniista piirteistä, ja lisukkeena erikoisia yksityiskohtia, jotka saavat sen erottumaan joukosta. On mielenkiintoista nähdä joskus tulevaisuudessa, minkälaisessa tutkimuksessa Easleya on käytetty.

Harmi vain, että Easley sijaitsee havaitsijan kannalta hieman hankalassa paikassa. Toisaalta tuo tarjoaa vähän pidempäänkin Kuuta katselleelle haastetta. Ainakaan omiin aisteihini ei ole osunut tietoa siitä, että Suomessa kukaan olisi Easleyn nimeämisen jälkeen onnistunut havaitsemaan tai kuvaamaan sitä. Kilpailuhenkisille olisi siis tarjolla kunniaa Suomen ensimmäisestä tietoisesti Easleystä tehdystä havainnosta. Sopivia havaintoaikoja voi selvitellä esimerkiksi mainiolla Virtual Moon Atlas -ilmaisohjelmistolla. Kuka tekee Suomen ensimmäisen uuden havainnon Easleystä?

Hämmentävä hiljaisuus

Annie Jean Easley (1933–2011).
Kuva: NASA.
Yhdysvalloissa on 1970-luvulta alkaen kunnioitettu mustien amerikkalaisten saavutuksia aina helmikuussa vietettävän Black History Monthin aikana. IAU virallisti Easleyn nimen 1.2.2021 ja se julkaistiin seuraavana päivänä. Nykyisin uusia tutkijoiden nimiä ei ilmesty Kuun kartoille edes joka vuosi, joten Annie Easley sai osakseen harvinaislaatuisen kunnian, ja vieläpä sopivasti tämänvuotisen Black History Monthin aluksi.

Näin ollen olisikin voinut helposti luulla, että vähintään NASA, Glennin tutkimuskeskus, sekä Clevelandin ja Birminghamin tiedotusvälineet huomioisivat poikkeuksellisen kunnianosoituksen. Moniko clevelandilainen, tai birminghamilaissyntyinen, tai ylipäätään musta nainen on saanut nimensä Kuuhun? Tyly tosiasia kuitenkin näyttäisi ainakin hakukoneiden perusteella olevan, etteivät sen paremmin NASA, Glennin tutkimuskeskus tai mikään muukaan taho muutamaa kuuharrastajaa lukuun ottamatta ole kiinnittäneet Easleyyn mitään huomiota.


Annie Easley vuonna 1981. Kuva: NASA / Glenn.
 

Toisin oli edellisen nimetyn Kuun kraatterin kohdalla. NASAn Goddardin tutkimuskeskuksessa mm. Lunar Reconnaissance Orbiter -kuuluotaimen parissa työskennellyt Craig Tooley (1960–2017) sai marraskuussa ansaitusti nimiinsä hienon ja kiinnostavan kraatterin Kuun etelänavan läheisyydestä. Tämän noteerasivat, joskin kummallisen myöhään, niin NASA, Goddardin tutkimuskeskus, kuin satunnaisesti jotkut harvat tiedotusvälineetkin. Joku minua kyynisempi ja provokatiivisempi voisi helposti kysyä, miksi valkoisen miehen mukaan nimetty kraatteri on kiinnostavampi kuin mustan naisen mukaan nimetty. Onko tosiaan niin, että NASAlla merkittävää työtä aiempina vuosikymmeninä tehnyt musta nainen muuttuu mielenkiintoiseksi vasta sitten, kun Hollywood kiinnittää häneen huomiota, mutta valkoinen mies on sitä automaattisesti?


*Tässä vaiheessa jollekin tulee epäilemättä mieleen mainio Hidden Figures – varjoon jääneet -elokuva ja sen pohjana ollut kirja. Katherine Johnson (1918–2020), Mary Jackson (1921–2005) ja Dorothy Vaughan (1910–2008) työskentelivät NASAn Langleyn tutkimuskeskuksessa Virginiassa. Heistä moneen kertaan palkittu Johnson on kuuluisin, ja Vaughania on kunnioitettu upealla kolmekilometrisella Kuun kraatterilla. Tänään perjantaina 26.2.2021 NASAn päärakennus Washington D.C.:ssä nimettiin Mary Jacksonin mukaan.


Tämä juttu ilmestyi lyhyempänä versiona myös Ursan Kraatterin reunalta -blogissani.

Kiitokset Oskari Syynimaalle kuvaluvasta.