Näytetään tekstit, joissa on tunniste basaltti. Näytä kaikki tekstit
Näytetään tekstit, joissa on tunniste basaltti. Näytä kaikki tekstit

keskiviikko 2. joulukuuta 2020

Chang'e-5:n laskeutumisalue

Kiinan Chang'e-5 teki onnistuneen laskeutumisen Kuun pinnalle eilen 1.12.2020. Tätä kirjoittaessani myös näytteenotto niin kairalla kuin kauhallakin on sujunut suunnitellusti. Paluumatka Maahan alkaa noin vuorokauden sisällä.

Kuu 1.12.2020 klo 20.17 Voltissa Nikon Coolpix P900:lla kuvattuna ja vähän GIMPillä muokattuna. Ympyrä osoittaa likimain Chang'e-5:n laskeutumisalueen sijainnin. Kuva: T. Öhman.
 

Laskeutumispaikka on melkoisen piirteetöntä tasankoa pohjoisella Oceanus Procellarumilla eli Myrskyjen valtamerellä noin 170 km Mons Rümkeristä koilliseen. Tämänhetkisten tietojen mukaan Chang'e-5:n koordinaatit ovat noin 43,0567°N 51,9164°W. Laskeutumisalueen löytämisen kannalta paras tuntomerkki on aiemmin nimellä Louville ω tunnettu noin 10 km pitkä ja 500 m korkea laavatasangon keskeltä törröttävä massiivi (kipuka). Chang'e-5 laskeutui siitä noin 10 km koilliseen. Muinainen laavauoma Rima Sharp mutkittelee noin 17 km Chang'e-5:stä länteen.

Laskeutumisalueen geologia pääpiirteissään on melko yksinkertainen. Kyseessä on nuori, eratosheeninen basalttitasanko. Kraatterilaskujen perusteella sen iäksi on määritelty noin 1,3 miljardia vuotta. Pääosa Kuun vulkanismista tapahtui reilut kaksi miljardia vuotta aiemmin, joten Chang'e-5:n näytteet ovat erittäin kiinnostavia monessakin mielessä. Näytteiden tieteellisestä merkityksestä kirjoittelin enemmän toissapäivänä.

Koostumukseltaan laskeutumisalue luokitellaan alhaisen titaanipitoisuuden basaltiksi. Siinä on noin 6–9 paino-% titaania (TiO2:na ilmoitettuna). Rautaa alueen basaltissa puolestaan on noin 17,5 paino-% (FeO:na ilmoitettuna). Nämä perustuvat tietenkin kaukokartoitustuloksiin, joten kun Chang'e-5:n näytteet saadaan takaisin Maahan ja analysoitua, saadaan yksi tärkeä mittauspiste lisää laboratoriossa määritettyjen pitoisuuksien ja kaukokartoitustulosten korrelointia varten.

En netistä ole onnistunut löytämään täysin itseäni miellyttäviä karttoja Chang'e-5:n laskeutumisalueesta, joten tein sellaiset itse. Tarkan paikan pöllin Phil Stookelta, joka on erilaisten laskeutumisalueiden paikantamisen mestari, joten se pitänee paikkansa. Oma kopioni Stooken kartasta ei tarkimmassa kartassa ole ihan pikselilleen samassa kohdassa, mutta sillä nyt ei omalta kannaltani ole minkäänlaista merkitystä.

Chang'e-5:n laskeutumisalue Oceanus Procellarumin pohjoisosassa. Nimistä Louville ω ei enää nykyään ole virallisesti hyväksytty. Karttaan ei selvyyden vuoksi ole merkitty kaikkia alueen nimettyjä kraattereita. Kuva: NASA / ASU / LROC / WAC /ACT-REACT QuickMap / T. Öhman.

Chang'e-5:n laskeutumisalue. Kuva: NASA / ASU / LROC / WAC /ACT-REACT QuickMap / T. Öhman.

Chang'e-5:n laskeutumisalue. Kuva: NASA / ASU / LROC / NAC /ACT-REACT QuickMap / T. Öhman.

Chang'e-5:n laskeutumisalue. Kuva: NASA / ASU / LROC / NAC /ACT-REACT QuickMap / T. Öhman.

Yllättävää kyllä, Kuu myös näyttäytyi Suomen taivaalla Chang'e-5:n laskeutumisen ja näytteenoton kannalta kriittisinä päivinä. Sitä piti tietenkin ihailla, vaikka juuri nyt ei satu kameraa kummempaa silmänjatketta mukana olemaankaan. Laitetaan siis tähän loppuun Chang'e-5:n innoittama kuvakavalkadi parilta viime päivältä. Kaikki allaolevat kuvat on napattu Nikon Coolpix P900:lla ilman jalustaa, ja kaikkia on ainakin hivenen säädetty GIMPillä.

Kuu puolisen vuorokautta täysikuun ja puolivarjopimennyksen jälkeen 30.11.2020 klo 22.30 melkoisen paksun stratocumulus-pilvikerroksen läpi. Kuva: T. Öhman.

 

1.12.2020 klo 20.18. Kuva: T. Öhman.


1.12.2020 klo 20.20. Kuva: T. Öhman.

2.12.2020 klo 09.39. Kuva: T. Öhman.

2.12.2020 klo 09.40. Kuva: T. Öhman.

2.12.2020 klo 09.41. Kuva: T. Öhman.

2.12.2020 klo 09.43. Kuva: T. Öhman.

sunnuntai 24. maaliskuuta 2019

Esitelmä Kuun synnystä Helsingissä

Tähtitieteellinen yhdistys Ursa ry:n tämän kevään esitelmäsarjassa keskitytään Kuuhun ja Marsiin. Minä puhun tiistaina 26.3.2019 klo 18.00 alkaen kohtalaisen kaikenkattavalla otsikolla "Kuun synty, kehitys ja tutkimuksen tulevaisuus." Kun kerran Kuun synnystä puhutaan, mukana on toki myös hieman tieteen historiaa 1600-luvulta alkaen.

Huomasin tuolta Ursan esitelmäsivulta, että erinomaisen tiedetoimittajan ja avaruuslentoekspertin Jari Mäkisen esitelmässä kaksi viikkoa minun vuoroni jälkeen on tarkoitus myös puhua Kuuhun paluusta. Esitelmien päivämäärämulkkausten seurauksena Jarilla on myös käytettävissään reippaasti enemmän aikaa kuin minulla, joten minä tulen jättämään tulevien kuulentojen osuuden huomattavasti lyhyemmäksi kuin alkujaan oli tarkoitus. Lähinnä tulen siis keskittymään Kuun perinteisiin syntyteorioihin, törmäysteorian perusteisiin ja nykytilaan, sekä Kuun geologisen historian päävaiheisiin. Ursan mukaan "esitystä voi seurata suorana sivulla https://www.youtube.com/watch?v=sR_YML4gh8k. Linkki toimii myös joitain päiviä jälkikäteen, kunnes esitelmä siirretään Ursan YouTube-kanavalle editoituna, jolloin sen voi katsoa sieltä." Tilaisuus on luonnollisesti maksuton ja kaikille avoin.

Aika: ti 26.3.2019 klo 18.00–19.00
Paikka: Tieteiden talo, sali 104, Kirkkokatu 6, Helsinki
Järjestäjä: Tähtitieteellinen yhdistys Ursa ry.    

sunnuntai 15. marraskuuta 2015

Kun laava virtasi Kylmyyden meressä

Mare Frigoris on se omituisenmuotoinen tumma kaistale Kuun lähipuolen pohjoisosissa. Pitkän matkaa se reunustaa Mare Imbriumia muodostaen Kuu-ukon kulmakarvan, ja jatkeineen (Sinus Roris ja Lacus Mortis) se kattaa reilut sata pituusastetta, tai tuollaiset 1700 km. Mistään vähäpätöisestä pläntistä ei siis ole kyse. Toisin kuin pyöreämmät meret, Mare Frigoriksen ei tiedetä täyttävän mitään törmäysallasta. Tämä voi osaltaan selittää sitä, että Frigorista on tutkittu moniin muihin Kuun meriin verrattuna hyvin vähän.

http://onlinelibrary.wiley.com/doi/10.1002/2014JE004753/abstract
Mare Frigoriksen tutkimusalueelta kartoitetut vulkaaniset yksiköt. Yksiköiden ikäsuhteet ja koostumukset on annettu seuraavassa kuvassa. CD = cryptomare deposit, EBF = eastern basalt feature, ECF = eastern central Frigoris, EF = eastern Frigoris, PD = pyroclastic deposit, WCF = western central Frigoris, WF = western Frigoris. Kuva: Kramer et al. 2015 / JGR / Wiley.
Tutkimusalueen kivilajiyksiköiden ikäsuhteet
(vanhimmat alimpana) ja niiden rauta- ja
titaanipitoisuudet. Kuva: Kramer et al. 2015 / 
JGR / Wiley.

Korkean alumiinipitoisuuden basaltit taas ovat Apollo-näytteissä harvinaisia Kuun basaltteja. Niissä on 12–18 painoprosenttia alumiinia (Al2O3), kun tavallisissa mare-basalteissa Al2O3-pitoisuus on vain 7–12 painoprosenttia. Lisäksi Apollo 14:n korkean alumiinipitoisuuden basalttinäytteistä löydettiin ainutlaatuisen korkeita kaliumpitoisuuksia. Kenties kiinnostavin piirre korkean alumiinipitoisuuden basalteissa on kuitenkin se, että kaikista mare-basalteista vanhimmat, noin 4,3 miljardin vuoden taakse ajoitetut Apollo 14:n basalttinäytteet ovat juuri korkean alumiinipitoisuuden tyyppiä. Niinpä nämä basaltit avaavat ikkunan Kuun varhaiseen magmaattiseen toimintaan.

Mitä tekemistä Mare Frigoriksella ja korkean alumiinipitoisuuden basalteilla sitten on toistensa kanssa? Paljonkin, ainakin jos uskomme Georgiana Kramerin ja kollegojen painotuoretta artikkelia Mare Frigoriksen basalteista. Ja itse ainakin uskon, sillä minulla oli ilo olla viimeisen muutaman vuoden aikana mukana tuossa seitsemisen vuotta kestäneessä, viime tammikuussa kuolleen B. Ray Hawken ideasta poikineessa projektissa, jonka ensimmäiset tulokset julkaistiin jo keväällä 2009. Silloin tutkimusryhmän koostumuskin oli varsin toinen kuin tutkimuksen lopullisessa artikkeliversiossa.

Kramerin laaja tutkimus perustui etenkin spektrianalyysiin Clementine-luotaimen monikanava-aineistosta, joka yltää ultravioletista lähi-infrapunaan. Oleellisia analyysissä olivat Mare Frigoriksen pintaa ruopineet pienet kraatterit, jotka tarjoavat nähtäväksi säteilyn ja mikrometeoriittipommituksen muokkaamaa pintaa tuoreempaa materiaalia. Näitä Frigoriksen basaltteihin syntyneitä kraattereita tutkittiin peräti 1533 kappaletta, ja ne antavat kattavan kuvan Frigoriksen alueen laavojen koostumuksesta ja alueen vulkaanisesta historiasta. Äkkiseltään vilkaisten piirteettömältä vaikuttava mare-tasanko on geologisessa mielessä kaikkea muuta kuin yksitoikkoinen.

Tutkimuksessa kävi ilmi, että Frigoriksen vulkaaninen historia on ollut pitkä ja todella monivaiheinen. Vaikka eri aikoina eri puolilla Frigorista purkautuneiden laavojen ja vähäisempien pyroklastisten ainesten koostumus on vaihdellut, niistä useimpia kuitenkin yhdistää yksi tekijä: Frigoriksen laavoista valtaosa on korkean alumiinipitoisuuden tyyppiä. Frigoris onkin pinta-alaltaan laajin korkean alumiinipitoisuuden basalttien esiintymisalue. Vaikka tällaiset basaltit siis ovat suuria harvinaisuuksia Apollo-näytteissä, ovat ne kuitenkin todellisuudessa Kuun pinnalla luultua yleisempiä. Tämä osoittaa jälleen kerran todeksi sen, että niin loistavia kuin Apollo-lennot olivatkin, on käsityksemme Kuusta väkisinkin hieman vääristynyt laskeutumispaikkojen vähyyden ja samankaltaisuuden vuoksi.

Frigoriksen seutukunta osuu yksiin erään Jeff Andrews-Hannan viime vuonna ehdottaman mahdollisen repeämävyöhykkeen kanssa. On tällä hetkellä arvailujen varassa, onko Frigoriksen basalttien koostumuksella suoraa yhteyttä ehdotetun repeämävyöhykkeen kanssa, mutta mahdolliselta se vaikuttaa. Mare Frigoris voikin paljastaa vielä kaikenlaista uutta ja yllättävää Kuun geologisesta historiasta ja niistä monimutkaisista prosesseista, jotka siihen ovat vaikuttaneet. 

P.S. 27.11.2015. Juttu pääsi Journal of Geophysical Research: Planets -lehden lokakuun numeron kanteenkin. Kuvassa ylinnä on Mare Frigoriksen rautapitoisuus, alinna titaanipitoisuus, ja keskellä 1533:n tutkimuksessa käytetyn pienen kraatterin sijainti. Kraatteripisteet on merkitty myös rauta- ja titaanikarttoihin. Kohdissa, joissa kraatteria osoittava piste erottuu taustastaan, on pintaregoliitin ja kraatterin paljastaman syvemmän, tuoreen aineksen koostumuksissa ero.
 

perjantai 14. helmikuuta 2014

Miksi ukolla on naama? Ja onko sillä väliä?

Kuu-ukko lienee useimmille tuttu. Mutta miksi ukolla ylipäätään on naama? Lyhyt selitys tietenkin on, että naaman ovat synnyttäneet nuorilla mare-basalteilla täyttyneet vanhat törmäysaltaat. Mutta onhan Kuun etäpuolellakin törmäysaltaita, joten miksi ne eivät ole täyttyneet? Tälle on tarjottu monenlaisia selityksiä, kuten etäpuolen paksumpaa kuorta, heikompaa Maan vetovoiman vaikutusta, ja vähäisempää lämmöntuottoa. Hyvää, yleisesti hyväksyttyä teoriaa ei ole kuitenkaan saatu aikaiseksi, ja Kuun puoliskojen erilaisuuden selvittämisessä on ollut runsaasti ”Muna vai vesinokkaeläin?” -tyyppisiä ongelmia. Viime vuoden lopulla Sciencessa julkaistun ja Suomenkin uutiskynnyksen ylittäneen tutkimuksen ansiosta Kuu-ukon naamalle on nyt löydetty kohtalaisen uskottava uusvanha selitysmalli, vaikka lopullinen vastaus perimmäiseen kysymykseen Kuun pallonpuoliskojen erilaisuudesta onkin edelleen hämärän peitossa, tai 42.

Kuu-ukko Rovaniemen Korkalovaarassa 14.1.2014.
Canon Ixus 70 digipokkari ja kevyt Photoshoppaus.
Kuva: T. Öhman
Kraatteroitumisprosessissa törmäysenergian jälkeen merkittävin tekijä lopputuloksen kannalta on kohdemateriaali ja sen ominaisuudet. Pikkukaupunkilaisjärkikin sanoo, että paksuun, kovaan ja kylmään kiveen on paljon hankalampi tehdä iso monttu kuin ohueen, pehmeään ja lämpimään. Vastaus Kuu-ukon kasvonpiirteisiin piileekin siis Kuun lähi- ja etäpuolien erilaisissa kuoren ja ylävaipan ominaisuuksissa.

Pariisilaisvetoisen, tietokonemallinnuksiin ja GRAIL-luotaimen tuloksiin Kuun kuoren paksuudesta perustuvan Katarina Miljkovićin ja kumppaneiden tutkimuksen mukaan Kuun lähipuolen altaat ovat läpimitaltaan jopa kaksi kertaan niin suuria kuin vastaavan kokoisten törmäävien kappaleiden etäpuolelle synnyttämät altaat. Syynä tähän on eritoten lähipuolen suurempi lämmöntuotanto, ja osin myös lähipuolen ohuempi kuori. Lämpimään ja pehmeään lähipuolen kuoreen syntyvässä altaassa lämmin ylävaippa nousee altaan ns. muokkautumisvaiheessa huomattavasti laajemmalla alueella kuin etäpuolen kylmän ja kovan kuoren tapauksessa. Tämä estää ympäröivää kuorta romahtamasta takaisin kraatteriin, jolloin lopputuloksena on hyvin laaja-alainen kuoren ohentuma ja sen myötä suurempi törmäysallas. Ja vaikka Miljković ja kumppanit eivät Kuu-ukon naamaan suoraa kantaa ottaneetkaan, voidaan noista lähipuolen suurista ohuen kuoren alueista helposti johtaa se päätelmä, että tällaiset alueet täyttyvät myöhemmin helposti basalteilla, vallankin kun ne vielä sijaitsevat alueella, jolla vulkanismia on suuremmasta lämmöntuotosta johtuen enemmän.
Vasemmalla Kuun lähi- ja oikealla etäpuolen kuoren paksuus. Mustat ympyröt kuvaavat läpimitaltaan yli 200 km:n suuruisia ohuen kuoren alueita, jotka tulkittiin törmäysaltaiksi. Kuten kuvasta hyvin käy ilmi, ovat ohentuneen kuoren alueet lähipuolella huomattavasti suurempia kuin etäpuolella. Kuva: Miljković et al. (2013) / Science

Kraatterimallinnus on valitettavan usein silkkaa humpuukia, mutta Miljkovićin ja melkoisen all-star -joukon artikkelilla on se etu puolellaan, että se perustuu havaintoihin (mikä ei ole ollenkaan itsestäänselvyys, kun mallinnuksesta puhutaan). Tietenkin on muistettava, että GRAILin tulokset ovat geofysikaalista tulkintaa, ja kuten yleisesti tunnettu ja geofyysikkojen itsensäkin myöntämä tosiasia on, geofyysikolta saa aina tarvittaessa vastaukseksi minkä numeron vain haluaa.* Miljkovićin ryhmän tulokset ovat kuitenkin uskottavia ja käyvät järkeen, joten uskotaan tähän teoriaan ainakin toistaiseksi.

Jutun asiasisällössä ei siis sinänsä ole moittimista, mutta lievää parranpärinää aiheuttaa käytetty terminologia. Törmäysaltaille ei ole olemassa yleisesti hyväksyttyä määritelmää, ja määrittely onkin aina allasjuttuja lukiessa syytä tarkistaa. Tässä tapauksessa altaiksi laskettiin halkaisijaltaan yli 200 km:n läpimittaiset GRAIL-aineiston perusteella hyvin ohuen kuoren alueiksi tulkitut rakenteet. Mitään perinteistä altaan määritelmäähän tämä ei vastaa, ja voi kysyä, onko esimerkiksi Sinus Aestuumin kohdalle piirretyn pylpyrän kohdalla todellakin ”törmäysallas”. Eihän tähän kenenkään maailma kaadu, mutta turhan hankalaksi tällainen luova sanojen käyttö elämän tekee. Esimerkiksi kraatteroituneiden kuorten paksuuksia ja allaskandidaatteja pitkään tutkinut Herb Frey kutsuu tällaisia kohteita vain kuvailevalla nimityksellä circular thin area (CTA) eli pyöreä ohut alue, väittämättä suoraan, että kyseessä välttämättä on törmäysallas. Vaikka valtaosa Miljkovićin ja kumppaneiden ”altaista” on todellisia altaita, tuppaa tällainen mutkien vetäminen suoraksi hieman häiritsemään.

Tähän asti tarina on ollut varsin suoraviivainen, mutta lopulta hieman kummalliseksi tämäkin meni. Tämä blogitekstinpätkäkin makasi puolivalmiina jo pitkään, mutta tammikuun Physics Today -lehdessä olleen Science-artikkelin pohjalta kirjoitetun uutisen ja Katarina Miljkovićin haastattelun myötä tutkimuksen ehkä kauskantoisimmat seuraukset muuttuivat merkittävästi lievemmiksi. Science-artikkelinsa lopussa nimittäin Miljković et al. puhuvat tulostensa vaikutuksista ns. lunar cataclysm- tai late heavy bombardment (LHB) -hypoteesille. Tuon ajatuksen mukaanhan Kuun rajun alkupommituksen jälkeen törmäystahti rauhoittui, kunnes noin 3,9 miljardia vuotta sitten tapahtui jälleen, syystä tai toisesta, runsaasti allaskokoluokan törmäyksiä. Miljković kollegoineen päätteli Science-artikkelissaan loogisesti, että aiemmin oletettua pienemmät kappaleet lähipuolen altaiden synnyttäjinä tarkoittavat myös ylipäätään pienempää (LHB:n) törmäysvuota, etenkin törmänneiden kappaleiden massan osalta.

Physics Todayn haastattelussa Miljković kuitenkin toteaa, ettei uusi mallinnus muuta LHB-hypoteesia mihinkään. Tämä siitä huolimatta, että aiemmat LHB:n massamallit yliarvioivat massavuon noin kahdeksankertaisesti (jos siis uskomme Miljkovićin tuloksia). Pelivaraa näissä eri malleissa siis on runsaasti, eikä oletettavasti isojen lehtien toimittajien, artikkelien esitarkastajien, ja rahoittajien painostuksesta äärimmilleen reviteltyjä Science- ja Nature-tulkintoja tule erehtyä luulemaan jumalolennon sanaksi. Vaikka jutun maailmojasyleilevyys siis hieman lässähtikin, on perussanoma kuitenkin selvä: Kuu-ukon naama johtuu lähipuolen lämpimästä ylävaipasta ja ohuesta kuoresta. Vielä kun joku keksisi, miksi Kuun lähi- ja etäpuolet loppujen lopuksi ovat niin erilaiset…


*”Paljonko on kaksi plus kaksi?”
Geologi: ”Suunnilleen neljä.”
Geokemisti: ”4,00 +/- 2”
Geofyysikko: ”Minkä luvun haluat?”

maanantai 18. maaliskuuta 2013

David Scott ja geologisen kenttäkokemuksen tärkeys

Apollo 15 oli Apollo-ohjelman ensimmäinen tieteellisesti todella kunnianhimoinen J-tyypin lento. Lennon komentaja David Scott laskeutui Jim Irwinin kanssa Imbriumin törmäysallasta reunustavien Apenniinien juurelle, tarkemmin sanottuna Hadleyn laavakanavan reunalle, Al Wordenin keskittyessä kaukokartoitukseen Kuun kiertoradalta. Apollo 15:n kuumoduli Falcon laskeutui kauemmas Kuun päiväntasaajasta kuin yksikään toinen lento, ja ainakin omasta mielestäni Apollo-lennoista maisemallisesti kaikkein kauneimmalle alueelle. Scott oli myös yksi harvoista Apollo-astronauteista, joka todella aidosti kiinnostui geologiasta, eikä yrittänyt päteä siinä ainoastaan siksi, ettei kukaan tiennyt, kuinka suuren painoarvon Deke Slayton antoi Kuun tutkimukseen painottuville ansioille miehistövalinnoissaan. Scottin mukana myös Irwin ja Worden panostivat geologian opintoihinsa, ja tuloksena olikin tieteellisesti erittäin menestyksekäs lento. Dave Scottin pysyvästä kiinnostuksesta Kuun tutkimusta ja tulevaisuuden kuulentoja kohtaan kertoo myös se, että hän edelleenkin – vetreänä kahdeksankymppisenä – käy silloin tällöin tieteellisissä konferensseissa puhumassa kuututkimuksesta. Eikä Scott ainoastaan keskity muistelemaan vanhoja kunnian päiviä, vaan hän on myös mukana esimerkiksi entisen opinahjonsa Massachusetts Institute of Technologyn avaruustekniikan laboratorion projektissa suunnittelemassa Kuuhun paluuta. Kiinnostavaa tässä Human Architecture for Lunar Operations -suunnitelmassa on muun muassa se, ettei se vaadi jättimäisiä kantoraketteja, vaan se voitaisiin toteuttaa jo olemassaolevilla ja todennäköisesti pian valmistuvilla raketeilla, ja myös laskeutumisalus on tässä suunnitelmassa realistisen kokoinen.

David Scott puhui tänään Brown–Vernadsky-mikrosymposiumissa toki myös Apollo 15:stä. Scott painotti, että tie Marsiin vie Kuun kautta, ja korosti miehistön geologisen kenttäkoulutuksen merkitystä. Ja sen sijaan, että miehistö kuljettaisi mukanaan monimutkaisia analyysilaitteita, Scott myös korosti, että miehistön tärkein rooli on kerättävien näytteiden geologisen kontekstin ymmärtäminen, ja sen myötä oikeiden näytteiden valinta, koska tarkimmat analyysit saadaan kuitenkin tehtyä vasta Maassa. Fiksu mies. On tosin syytä huomata, että nykyiset kannettavat analyysilaitteet alkavat jo lähestyä Star Trek -teknologiaa, joten olisi varsin kummallista, ellei sellaisia tulevaisuudessa Kuussa käytettäisi.

Oheisessa ääninäytteessä, jonka mukana on hieman suttuista videokuvaa, Scott puhuu lähinnä kahdesta maineikkaasta Apollo 15:n kuunäytteestä, vulkaanisista vihreistä lasipallosista eli sferuleista koostuneesta 15425:stä (joka kuljetuksen aikana hajosi useampaan osaan), josta jokunen vuosi sitten löydettiin enemmän vettä kuin aiemmin kuviteltiin voivan olla mahdollista (tämä tutkimus käytännössä aloitti vetisen Kuun vallankumouksen, kun puhutaan Kuun sisäisestä vedestä eikä pinnalla, napojen ikuisessa pimeydessä olevien kraatterien pohjalla olevasta jäästä), sekä huokoisesta basaltista 15016, jonka hakemiseksi pieni valkoinen valhe turvavyöongelmista oli tarpeen. Videon jälkimmäisessä pätkässä, josta jopa jotain näkee, Scottin seurana patsastelee mikrosymposiumin vetäjä, professori James W. Head III. Hän oli mukana kouluttamassa Apollo-astronautteja, ja on sittemmin tutkinut kutakuinkin kaikkea mahdollista planeettageologian alalla.