Näytetään tekstit, joissa on tunniste geokemia. Näytä kaikki tekstit
Näytetään tekstit, joissa on tunniste geokemia. Näytä kaikki tekstit

torstai 2. kesäkuuta 2022

Tutankhamonin taivaalliset aarteet, osa 1

 Tutankhamonin haudan löytyminen

Sata vuotta sitten, marrakuussa 1922, oli Howard Carterilla (1874–1939) jännät paikat. Carter oli jo nuorukaisena vuodesta 1891 alkaen toiminut Egyptissä arkeologeja avustaneena piirtäjänä ja oppinut sitten arkeologiksi ja egyptologiksi itsekin. Hän oli vuonna 1907 aloittanut lordi Carnarvonin (viides Carnarvonin jaarli George Edward Stanhope Molyneux Herbert, 1866–1923, Downton Abbey -tv-sarjasta monille tutun Highclere Castle -kartanon omistaja) palkkaamana egyptologina johtaen kaivauksia muinaisen Egyptin pääkaupungin Theban eli nykyisen Luxorin alueella.

Kuninkaiden laakso oli Egyptin Uuden valtakunnan ajan (n. 1550–1069 eaa.) faraoiden hautapaikka. Vuonna 1914 lordi Carnarvon sai luvan tehdä kaivauksia siellä. Ensimmäisen maailmansodan alkuunsa keskeyttämät tutkimukset pääsivät kuitenkin kunnolla vauhtiin Carterin johdolla vasta vuonna 1917.

Asiantuntijat, etenkin amerikkalainen miljonääri ja harrastajaegyptologi Theodore M. Davis (1838–1915) olivat aiemmin julistaneet Kuninkaiden laakson loppuunkalutuksi. Carter oli kuitenkin toista mieltä. Suurelta osin juuri Davisin rahoittamien kaivausten tuottamien löytöjen perusteella Carter  oli nimittäin vakuuttunut, että jossain Kuninkaiden laaksossa täytyi olla tuolloin erittäin heikosti tunnetun farao Tutankhamonin1 (faraona n. 1332–1323 eaa. tai n. 1361–1352 eaa.) hauta.

Lordi Carnarvon oli pitkämielinen ja intohimoinen egyptologian tukija ja harrastaja, mutta kun vuosia kului eikä mainittavampaa edistystä tapahtunut, alkoi hänelläkin vuonna 1921 usko hiipua ja jatkuva rahanmeno hirvittää. Niinpä hän päätti kaivausten loppuvan vielä samana vuonna. Carter kuitenkin uskoi vakaasti olevansa oikeilla jäljillä ja lupasi kustantaa työt omasta taskustaan, mikäli edelleenkään ei löytyisi mitään mainittavampaa. Tämä teki vaikutuksen lordiin ja kaivauksia jatkettiin. Talvikauden 1922–1923 kaivaukset olisivat kuitenkin viimeiset, jonka lordi Carnarvon lupasi rahoittaa.

Marraskuun neljäntenä päivänä vuonna 1922 Carterin palkkaama paikallinen, ilmeisesti jälkipolville tuntemattomaksi jäänyt vedenkantajapoika törmäsi maan alle johtavien portaiden ylimmäiseen portaaseen. Paikka oli vain parin metrin päässä kohdasta, johon Davis oli aikoinaan lopettanut omat kaivauksensa. Myös Carter itse oli pyörinyt samoilla kulmilla jo aiempina vuosinaan. Portaat puhdistettiin nopeasti irtokivistä ja oviaukko paljastui. Carter saattoikin kirjoittaa kenttäpäiväkirjaansa pokkkeuksellisen lyhyen ja ytimekkään toteamuksen: ”Hautakammion ensimmäiset portaat löydetty.”2

Carter sähkötti löydöstä lordi Carnarvonille Englantiin. Carnarvon seurueineen matkusti Egyptiin ja 26.11.1922 hänestä ja Carterista tuli yhdessä Carnarvonin tyttären lady Evelyn Herbertin (Evelyn Leonora Almina Beauchamp, 1901–1980) ja Carterin avukseen kutsuman kollegansa Arthur Robert Callenderin (1875–1936) kanssa kolmeentuhanteen vuoteen ensimmäiset ihmiset, jotka olivat nähneet Tutankhamonin kulta-aarteiden täyttämän hautakammion.3

 

Lordi Carnarvon, hänen tyttärensä lady Evelyn ja Howard Carter Tutankhamonin hautaan johtavilla portailla marraskuussa 1922. Kuva: Harry Burton / The Griffith Institute Archive / Public Domain.
Hyvin nopeasti Tutankhamonin hautakammio paljastui muiden faraoiden hautojen tapaan jo pian hautaamisen jälkeen ryöstetyksi. Ryöstöjä oli itse asiassa kaksikin, mutta molemmat jäivät syystä tai toisesta lähinnä surkeiksi ryöstöyrityksiksi. Siksi hautakammiokompleksista löydettiin tuhansittain satumaisen arvokkaita esineitä, Tutankhamonin muumion kultanaamio näistä kuuluisimpana. Tätä lordi Carnarvon ei kuitenkaan itse ehtinyt nähdä, sillä Tutankhamonin sarkofagi avattiin vasta lokakuussa 1925. Lordi Carnarvon oli kuollut jo huhtikuussa 1922 tulehtuneen hyttysenpiston aiheuttaman bakteeri-infektion (erysipelas) komplikaatioihin (eikä muumion kostoon, vaikka viihdeteollisuus silloin ja yhä edelleen niin haluaa uskotella).

Gerzehin rautahelmet ja Tutankhamonin tikari

Rautakauden alun ajankohdasta Egyptissä ja sen lähialueilla liikkuu monenlaisia käsityksiä. Joidenkin lähteiden mukaan raudan valmistus rautamalmista opittiin Lähi-idän alueella suunnilleen Tutankhamonin valtakaudella tai pian sen jälkeen, toisten mukaan taas vasta noin 500–600 vuotta ennen ajanlaskumme alkua. Toisaalta rautaa on löydetty myös Kheopsinin eli Khufun pyramidista Gizasta vuoden 2560 eaa. paikkeilta. Erittäin harvinaista metallista rautaa tuotiin Anatoliasta Egyptiin vasta 1200-luvulla eaa. Rautahelmiä on kuitenkin löydetty jo esidynastisen ajan haudoista yli viidentuhannen vuoden takaa. Miten moinen on mahdollista?

Gerzehissä4 Kairon eteläpuolella on liki 300 esihistoriallista hautaa. Vuonna 1911 kahdesta haudasta löydettiin helmiä, joista toiset olivat olleet vainajan kaulalla ja vyötäröllä, toiset vainajan käsissä. Ketjuissa olleet helmet koostuivat kullasta, lapislatsulista, karneolista ja akaatista. Toisen vainajan käsissä olleissa helmissä oli vielä laajempi valikoima kallisarvoisia korukiviä: lapislatsulia, obsidiaania, karneolia, granaattia, serpentiiniä, kalsedonia, kalsiittia ja kultaa sekä vuolukiveä. Lisäksi niin ketjuissa kuin käsissäkin oli rautahelmiä.

Noin puolitoista senttiä pitkiä putkimaisia rautahelmiä arveltiin jo pian löydön jälkeen meteoriittiraudasta tehdyiksi. Kuitenkin vasta vuonna 2013 kaksi toisistaan riippumatonta tutkimusryhmää osoitti eri analyysimenetelmiä käyttäen oletukset tosiksi. Diane Johsonin johtama ryhmä sai määriteltyä, että kyseessä oli rakenteellisen luokittelun perusteella tyypillisin rautameteoriitti eli oktaedriitti.5 Thilo Rehrenin johdolla tehdyssä tutkimuksessa meteoriittitulkinta sai vahvistusta helmien korkeasta germanium-pitoisuudesta.

Kolme Gerzehin yhdeksästä rautahelmestä. Kuva: Thilo Rehren et al., 2013. 5,000 years old Egyptian iron beads made from hammered meteoritic iron. Journal of Archaeological Science 40:47854792 / Gianluca Miniaci / Petrie Museum of Egyptian Archaeology / CC BY 3.0.
Erojakin tutkimusryhmien tulkinnoissa oli. Johnsonin näkemyksen mukaan Gerzehiksi nimettyä rautameteoriittia oli työstetty ainoastaan kylmänä. Rehrenin ryhmän tulkinta puolestaan oli, että runsaan nikkelipitoisuutensa vuoksi meteoriittirauta olisi ollut liian haurasta, jotta se olisi kylmänä kestänyt takomisen millin–parin paksuiseksi levyksi ja sen taivuttamisen putkeksi. Olipa työstömenetelmä mikä hyvänsä, Gerzehin helmet ovat kuitenkin vanhin todiste raudan käytöstä muinaisessa Egyptissä. Samalla niiden esiintyminen kullan ja muiden kallisarvoisten korukivien kanssa osoittaa, että rautaa pidettiin poikkeuksellisen arvokkaana materiaalina.

Rautameteoriitit sisältävät huomattavasti runsaammin nikkeliä kuin maapallolla hyvin harvinainen metallinen rauta tai rautamalmista jalostettu rauta. Maalliseenkin rautaan voi kuitenkin joskus harvoin esimerkiksi rauta- ja nikkelipitoisen kuparimalmin rikastamisen yhteydessä päätyä enemmän nikkeliä kuin siinä alkujaan oli. Siksi pelkkä kohonnut nikkelipitoisuus ei ole vedenpitävä todiste rautameteoriittikandidaatin tai raudasta valmistetun vanhan esineen avaruudellisesta alkuperästä. Ja kun kyse on korvaamattoman arvokkaista arkeologisista löydöistä, esinettä vahingoittavat analyyttiset menetelmät eivät ole mahdollisia eikä tutkimusluvan saaminen tämän vuoksi ole järin helppoa. Siksi vuonna 2013 tunnetuista 28:sta muinaisegyptiläisestä nikkelipitoisesta rautaesineestä vain Gerzehin helmet olivat todistetusti meteoriittista alkuperää.

Nikkelipitoisista rautaesineistä kuuluisimman löysi jo Howard Carter Tutankhamonin haudasta. Avattuaan Tutankhamonin sarkofagin vuonna 1925 hän löysi kaksi tikaria. Muumion vatsan päälle aseteltu tikari oli valmistettu kokonaan kullasta. Myös faraon oikean reiden päällä olleen tikarin lapislatsulilla, karneolilla ja malakiitilla koristeltu kahva oli tehty kullasta, mutta terä oli rautaa. Sen on ainakin jo viimeiset viitisenkymmentä vuotta uskottu olevan meteoriittista alkuperää, vaikkei analyysituloksia tai -menetelmiä aikoinaan julkaistukaan. Varmuus asiasta on kuitenkin saatu vasta viime vuosina. 

Tutankhamonin kultakahvainen ja rautateräinen tikari. Rajattu alkuperäisestä kuvakollaasista. Kuva: Takafumi Matsui et al., 2022. The manufacture and origin of the Tutankhamen meteoritic iron dagger. Meteoritics & Planetary Science 57(4):747–758 / CC BY-NC-ND 4.0.

Vuonna 2016 Daniela Comellin vetämä ryhmä julkaisi ensimmäiset kunnolliset geokemialliset analyysitulokset Tutankhamonin rautatikarista. Niiden mukaan tikarin metallissa on noin 11 painoprosenttia nikkeliä ja puolisen painoprosenttia kobolttia. Nikkeliä on enemmän kuin missään ihmisten ennen 1800-lukua rautamalmista valmistamissa rautaesineissä, mutta rautameteoriitille se on aivan normaali pitoisuus. Vähintään yhtä oleellinen todiste on, että nikkelin ja koboltin suhde vastaa täysin rautameteoriiteille tyypillistä suhdetta.

Viimeisin artikkeli Tutankhamonin rautatikarista julkaistiin huhtikuun Meteoritics & Planetary Science -lehdessä. Takafumi Matsuin johdolla tehty tutkimus vahvisti Comellin ryhmän tulokset terän nikkeli- ja kobolttipitoisuuksista. Lisäksi uudet analyysit entisestään varmistavat sen meteoriittista alkuperää ja antavat kiehtovia viitteitä sen valmistuksesta ja päätymisestä Tutankhamonin arkkuun.

Matsui kollegoineen pani merkille, että vaikka terä ei ole ruostunut, siinä on kuitenkin jonkin verran tummia pisteitä ja läikkiä, jotka eivät ainakaan vajaan sadan vuoden aikana ole muuttuneet miksikään. Niiden kohdilla terän rikki- ja klooripitoisuudet olivat selvästi kohonneet. Nämä havainnot sopivat hyvin rautameteoriiteissa tavallisten troiliittisulkeumien ja rautameteoriittien yleisen rapautumistuotteen akaganeiitin aiheuttamiksi.    

Mielenkiintoisin Matsuin ja kollegoiden tulos saatiin terän nikkelin jakaumakartasta. Siinä nähtiin noin millimetrin levyisiä lamellimaisia rakenteita. Ne ovat Matsuin artikkelin mukaan todennäköisimmin jäänteitä oktaedriitti-tyypin rautameteoriiteille ominaisesta Widmanstättenin rakenteesta. Säilynyt Widmanstättenin rakenne yhdessä troiliittisulkeumien kanssa osoitti, että terää työstettäessä sen lämpötila on ollut korkeintaan 700–950°C:n tienoilla.

Nikkelin jakauma osassa Tutankhamonin rautatikarin terää. Punaiset sävyt kuvaavat suurempia pitoisuuksia, mutta asteikko kuvastaa vain laitteen mittaamien signaalien määrää. Jakaumassa on nähtävissä Widmanstättenin rakenteelle ominainen lamellimainen ristikkäisrakenne. Rajattu alkuperäisestä kuvakollaasista. Kuva: Takafumi Matsui et al., 2022. The manufacture and origin of the Tutankhamen meteoritic iron dagger. Meteoritics & Planetary Science 57(4):747–758 / CC BY-NC-ND 4.0.

Terän ohella Matsui kollegoineen analysoi myös tikarin kahvaa. Sen kullassa oli poikkeuksellisen runsaasti kalsiumia, mutta ei rikkiä. Tämä viittaa siihen, että kahvan koristeiden kiinnityksessä ei käytetty orgaanista liimaa tai kipsilaastia, vaan kalkkilaastia. Tähän vaadittua teknologista osaamista ei kuitenkaan Egyptissä ollut vielä Tutankhamonin aikaan. Sen sijaan kalkkilaastin käyttö kultakoristeiden valmistuksessa tunnettiin noihin aikoihin Mitannin valtakunnassa nykyisen Syyrian ja Turkin seuduilla.

Tikarin Mitannilaista alkuperää tukevat vahvasti myös kirjalliset todisteet. Amarnan kirjeinä tunnettu kasa savista diplomaattipostia nimittäin kertoo, kuinka Mitannin kuningas Tusratta naitti tyttärensä Taduhepan farao Amenhotep III:lle eli Amenofis III:lle (faraona ehkä n. 1386–1349 eaa. tai 1388–1350 eaa.). Kultakahvainen rautatikari on kuvattu virkamiesmäisen tarkasti kahdessakin Amarnan kirjeessä, joissa luetteloidaan Tusrattan häälahjoja tulevalle vävypojalleen. Amenhotep III oli todennäköisesti Tutankhamonin isoisä, joten on varsin helppo kuvitella, että yllättäen kuollut ja hätäisesti haudattu nuori farao sai matkalle tuonpuoleiseen mukaan vaarivainaansa puukon, semminkin kun arvoesineiden, arkkujen ja hautojenkin kierrätys oli tuolloin melko yleinen käytäntö.

Tutankhamonin tikarin meteoriittista alkuperää voi siis uusimpien tutkimusten valossa pitää varmana. Vaikuttaa myös uskottavalta, että oktaedriitti-meteoriitti, josta tikarin terä valmistettiin, putosi jonnekin nykyisen Syyrian pohjoisosien tai Turkin kaakkoisosien tienoille, tai ainakin tikari valmistettiin siellä.

Muinaiseen Egyptiin ja rautameteoriitteihin liittyy vielä yksi mielenkiintoinen sivuhaara. Vain muutama kymmenen vuotta Tutankhamonin kuoleman jälkeen alkaneen 19. dynastian aikana rautaa merkitsemään vakiintui uusi hieroglyfi, joka tarkoitti ”taivaan rautaa” tai ”rautaa taivaasta”.6 Lisäksi samoihin aikoihin kirjoitettiin ilmeisesti Karnakin temppelissä Thebassa teksti, jonka on tulkittu kuvaavan meteoriittia. Näillä perustein on ajateltu, että egyptiläiset tiesivät rautaa joskus putoavan taivaasta. Sikäli kun tämä oletus pitää paikkansa, egyptiläiset tunsivat meteoriittien taivaallisen alkuperän kahdeksansataa vuotta ennen kuin ensimmäiset luotettavahkot kreikkalaiskuvaukset meteoriiteista kirjoitettiin. Siihen että länsieurooppalainen ”sivistyneistökin” tämän oivalsi, menikin sitten aikaa yli kolmetuhatta vuotta.


Howard Carter löysi Tutankhamonin haudasta myös toisen kauniin ja kiinnostavan esineen, jonka alkuperä on avaruudellinen. Se on tarinan kakkososan aiheena.


Hieman Kuusta -ekstra: Muinaisten egyptiläisten rakennus- ja korukivet

Tuhansien vuosien takaisessa Egyptissä maalliset rakennukset, niin faraoiden palatsit kuin tavallisen kansan asumuksetkin, rakennettiin yleensä savitiilistä. Ne eivät edes Egyptin ilmasto-oloissa ole järin pitkäikäisiä. Kun työlle tarvittiin ikuista takuuta, kuten hautojen ja temppelien kohdalla oli, rakennusmateriaali vaihtui kiveksi.

Hiekka- ja kalkkikivi olivat muinaisen Egyptin tärkeimmät rakennuskivet. Ne ovat Egyptissä hyvin yleisiä kivilajeja, joten niiden saatavuudessa ei ollut ongelmia. Suomalaisille kovin tuttua punaista graniittia arvostettiin Egyptissäkin korkealle, ja sitä käytettiin mm. sarkofageissa ja patsaissa. Sitä saadakseen piti kuitenkin purjehtia Niiliä Assuaniin Ensimmäiselle kataraktille saakka, jossa graniittia ja sen sukuisia syväkiviä louhitaan vielä nykyäänkin. Sivuhuomautuksena todettakoon, että Niilin kaikki kuusi kataraktia eli koskipaikkaa johtuvat magmakivipaljastumista.

Mustaa laavakiveä, basalttia, saatiin Kairosta lounaaseen sijaitsevan Faijumin keitaan pohjoispuolelta. Anortosiittia7 taas louhittiin Libyan aavikolta, josta sitä nubialaisten kanssa solmittujen kauppasuhteiden avulla saatiin Vanhan valtakunnan aikana (n. 2700–2200 eaa.) tai jo aiemminkin patsaiden ja astioiden raaka-aineeksi.

Esimerkiksi kallisarvoisten voiteiden ja öljyjen säilytykseen käytettyihin astioihin ja pulloihin tarvittua kalsiitti-alabasteria louhittiin farao Ekhnatonin pääkaupungikseen perustaman Amarnan eli Akhetatenin eteläpuolella sijainneista louhoksista. Alabasteri oli sikälikin tärkeää, että rikkaiden vainajien sydän ja muut sisäelimet säilöttiin usein alabasterista valmistetuissa astioissa.

Kultaa Egyptissä oli runsaasti omasta takaa, mutta monet muut Tutankhamonin ja muiden faraoiden kallisarvoisimmista aarteista päätyivät Egyptiin kaupankäynnin seurauksena hämmästyttävän laajalta alueelta. Kuparia löytyi jo varhain valloitetuilta Siinain niemimaalta ja Ala-Nubiasta Niilin Ensimmäisen ja Toisen kataraktin väliseltä alueelta, sekä sittemmin Syyriasta ja Kyprokselta. Egyptiläiset hyödynsivät Siinain turkoosiesiintymiä jo ainakin 4000 eaa.

Krysoliittejä ja mahdollisesti muitakin korukiviä faraot puolestaan kaivatuttivat Punaiseltamereltä Geziret El Zabargadin8 saarelta n. 1500 eaa. lähtien. Vulkaanista lasia eli obsidiaania puolestaan tuotiin Armeniasta, hopea piti hankkia Anatoliasta ja Babyloniasta. Babylonialaiset toimivat myös välikätenä, kun nykyisen Afganistanin Sar-e-Sangin laaksosta kaivettu lapislatsuli päätyi esimerkiksi faraoiden rannerenkaisiin ja pigmentiksi maaleihin.9

maanantai 22. heinäkuuta 2013

Vale, emävale, tietokonesimulaatio?

Viime kuukausina on taas saanut valitettavasti nähdä, kuinka suurella nimellä ja aggressiivisella markkinoinnilla saadaan julkisuudessa ja valitettavasti myös ns. arvostetuissa tiedelehdissä läpi tutkimusta, jonka tieteelliset meriitit ovat hyvin vähissä. Ja koska tiedetoimittajilla ei ole mahdollisuutta olla joka alan asiantuntijoita, maineikkaan tutkijan nimellä suureen ääneen markkinoitu tutkimus menee ensin läpi suuremmissa tiedetoimituksissa, ja tihkuu sitten ennen pitkää sieltä Suomeenkin. Näinhän se menee, ja vika ei siis todellakaan ole toimittajien, vaan lisää rahaa halajavien tutkijoiden ja otsikoita (ja niiden myötä rahaa) haluavien yliopistojen ja tutkimuslaitosten. Ei, tällä kertaa kyse ei ole siitä, että NASA jälleen kerran löytää Marsista vettä (Sivumennen sanoen en tunne yhteen planeettatutkijaa tai planeettatutkimuksesta kiinnostunnutta maallikkoa, joka suhtautuisi vähintään kerran–pari vuodessa julkistettaviin hämmästyttäviin uusiin löytöihin Marsin vedestä minään muuna kuin kestovitsinä, joka vielä nauratti joskus vuosikymmen sitten. Miksi niitä siis jatkuvasti suureen ääneen edelleen toitotetaan tiedeviestimissä?), vaan siitä, kuinka tietokonesimulaatioissa ”löydetään” Kuun kraattereiden keskuskohoumista mineraaleja, jotka ovat muka ”eksoottisia”. Toisesta, melkein vastaavasta ja samaan aikaan sattuneesta mediatapauksesta jaksan ehkä urputtaa joskus myöhemmin.

Nature Geoscience -lehdessä julkaistiin toukokuun lopulla tutkimus nimeltään Projectile remnants in central peaks of lunar impact craters. Suomessakin tuo juttu pääsi Tähdet ja Avaruus -lehden sinänsä ansiokkaisiin uutisiin, kun sitä ensin oli muun muassa Space.comissa hehkutettu. Jo artikkelin otsikointi paljastaa mediapelin: otsikossa ei mitenkään viitata siihen, että kyseessä on vain uusiin tietokonesimulaatioihin ilmestynyt mahdollisuus, vaan valittu sanamuoto herättää lukijan kiinnostuksen antamalla rivien välissä ymmärtää, että törmänneen kappaleen jäänteitä olisi havaittu Kuun kraattereiden keskuskohoumissa. Mistään havainnoista ei kuitenkaan ole kyse, vaan perinteisten tietokonemallintajien kunniatonta perintöä vaalien Z. Yue ja kumppanit eivät turhaan rasita tutkimustaan vertaamalla malliensa tuloksia enemmän tai vähemmän suoriin havaintoihin keskuskohoumista, tai ylipäätään juuri mihinkään todellisuuteen liittyvään.

Lyhyesti sanottuna artikkelin perusajatus on, että Kuussa törmäysnopeuden ollessa riittävän hidas, eli tässä tapauksessa alle 12 km/s, törmänneestä kappaleesta huomattava osa ei höyrysty, sula, lennä heitteleen mukana ulos kraatterista, tai sekoitu törmäyssulaan ja breksioihin, vaan jää mystisesti lillumaan kaiken muun kraatterin kiviaineksin päälle, ja päätyy siitä keskuskohoumaan. Koska oliviini on tyypillinen mineraali monissa meteoriittityypeissä, mutta vähäinen tekijä Kuun yläkuoresta suurimman osan muodostavassa anortosiitissä, esittävät Yue ja kumppanit keskuskohoumissa spektroskooppisesti tunnistettujen oliviinirikkaiden kivilajien olevan törmänneen kappaleen saastuttamia, eivätkä ne näin ollen kertoisi mitään Kuun pinnanalaisesta koostumuksesta. Törmäävien kappaleiden nopeusjakaumien perusteella Yue kollegoineen väittää, että jopa 25%:ssa Kuun suurten kraatterien keskuskohoumista pitäisi löytyä tämä ”eksoottinen” oliviinirikas koostumus.


Copernicuksen synty Yue et al:in (2013) tietokonemallin mukaan. Törmäysnopeus 10 km/s ja duniittisen törmäävän kappaleen läpimitta 7 km. Punaisena kuvattu törmäävästä kappaleesta peräisin oleva aines jää kaivautumiskraatterin reunoille (yläkuva), ja myöhemmässä vaiheessa kerääntyy sitten keskuskohoumaan (alakuva). Ruskealla kuvattu vaipan aines ei yllä lähellekään pintaa, vaikka Copernicuksen keskuskohoumassa oliviinia onkin havaittu. Vaikka tietokonemallissa homma toimii, sillä ei välttämättä ole mitään tekemistä todellisuuden kanssa. Kuva: Yue et al. (2013) / Nature Geoscience

Näissä väitteissä on lukuisia pahoja ongelmia. Kuten vanhempi ja viisaampi kollega muutaman työhuoneen päästä, eli Paul Spudis omassa erinomaisessa blogissaan tästä samaisesta aiheesta painotti, ei oliviinin tunnistaminen sieltä täältä Kuun pinnan spektreistä ole mitenkään kummallista. Oliviinia on havaittu Kuun pinnalla niin eräiden suurempien kraatterien, kuten Copernicuksen keskuskohoumista, kuin eritoten pienempien kraatterien reunoiltakin. Mitään erityisen merkillistä näissä havainnoissa ei pääsääntöisesti siis ole, mutta oliviinin jakauma sinänsä on kiinnostava kysymys. Yuen ja kumppaneiden artikkelissa vain jotenkin merkillisesti oletetaan paitsi oliviinin olevan kovinkin kummallista Kuun pinnalla, myös että kaikki tutkijat kuvittelisivat keskuskohoumissa havaitun oliviinin olevan peräsin Kuun vaipasta tai ainakin alakuoresta. Kuun kerrosjärjestystä ovat kuitenkin suuret törmäysaltaat muokanneet moneen kertaan, ja sen lisäksi Kuussa on ollut runsaasti erilaista magmaattista toimintaa, myös intruusioita, joissa väkisinkin syntyy oliviinirikkaita kivilajeja, joista myöhempien törmäysten on hyvä nostaa oliviinia pintaan koskematta lainkaan Kuun vaippaan. No, ehkä tietokonemallintajat haluavat kuvitella, että kaikki muut luulevat yksinkertaisesti Kuun yläkuoren olevan vain ja ainoastaan anortosiittia, alakuoren noriittia, ja vaipan duniittia. Globaalina yksinkertaistettuna peruslähtökohtana tuo tämänhetkisen tiedon valossa toki edelleen pätee, mutta paikallinen geologinen todellisuus voi olla kuitenkin kovin erilainen.

Tein huvikseni pienen testin Yue et al:in artikkelin väitteille. Valitsin ensin Kuun nimetyistä kraattereista ne, joille on iäksi määritetty varhaisimbrikautinen tai nuorempi, ja näistä edelleen ne, joiden läpimitta on 40–200 km, ja joilla siis kokonsa puolesta pitäisi olla selvä keskuskohouma. Lisäksi poistin joukosta pienen määrän selvästi peittyneitä kraattereita. Jäljelle jäi 215 kraatteria. Tämän jälkeen kaivoin esiin kolme julkaisua, joissa on yritetty määrittää keskuskohoumien koostumuksia. Valitsin näistä tutkimuksista ”oliviinirikkaat” keskuskohoumat varsin väljällä seulalla, jotta mukaan varmasti tulisivat kaikki, joissa spektroskooppisesti on edes jonkinlainen oliviiniin vähänkään viittaava signaali havaittu. Käytännössä tämä tarkoitti yli 22,5 tilavuusprosenttia oliviinia tai ”anortosiittinen troktoliitti” Cahill et al. 2009:n mukaan, ”troktoliitti” tai ”anortosiittinen troktoliitti” Tompkins & Pieters 1999:n mukaan, ja intermediäärinen tai sitä mafisempi koostumus Song et al. 2013:n mukaan. Tunnustan suoraan, että vertailuni lähtökohdissa on jo sinänsä joitakin ongelmia, koska kyseessä ei ole laisinkaan satunnainen otanta, pienten numeroiden statistiikkaan ajaudutaan väistämättä, eivätkä eri spektroskooppisten tutkimusten tulokset järin hyvin vastaa toisiaan, mutta kaikki tämä huomioidenkin alla olevassa taulukossa koottuna olevat tulokset ovat silti mielenkiintoisia.



Ikä
Kokonais-lukumäärä
Havaitut
”oliviinirikkaat” Lukumäärä
Mallin ennuste (25%) Lukumäärä
Kopernikaaninen
23
4
5,75
Eratostheninen
49
5
12,25
Myöhäisimbrinen
88
2
22
Varhaisimbrinen
55
3
13,75
Yhteensä
215
15
53,75
 


Keskuskohoumissa on siis ainakin toistaiseksi havaittu merkittävästi vähemmän ”oliviinirikkaita” (”oliviinipitoinen” olisi geologisesti parempi termi, mutta koska spektroskooppisesti tarkkoja pitoisuuksia ei käytännössä pystytä luotettavasti määrittämään, kutsuttakoon tällä kertaa noita koostumuksia oliviinirikkaiksi) koostumuksia kuin mitä uusi tietokonemalli ennustaa. Korostan sitä, että esimerkiksi kopernikaanisia kraattereita taulukossa on niin vähän, etteivät luvut ole tilastollisesti lainkaan merkittäviä, ja toisaalta voi väittää, että varhaisimbristen kraatterien keskuskohoumista osa on erodoituneita ja osa peittyneitä, eikä niistä siten voisikaan havaita oliviiniä. Eratosthenisten ja myöhäisimbristen kraatterien kohdalla tällaisia ongelmia ei kuitenkaan äkkiä ajatellen pitäisi olla ainakaan kovin merkittävissä määrin, ja silti havainnot ja mallin ennuste eivät laisinkaan vastaa toisiaan: Yue kollegoineen ennustaa merkittävästi enemmän oliviinirikkaita keskuskohoumia kuin mitä toistaiseksi on havaittu. Olisi ollut mielenkiintoista lukea, mitä mieltä artikkelin kirjoittajat ovat tällaisesta epäsuhdasta, mutta koska havaintoihin vertaaminen ei heitä kiinnostanut, jää tämä arvailujen varaan.

Vaikka siis en juurikaan arvosta Yuen ja kollegoidensa artikkelia (Josta myös löytyy – etenkin sen vain sähköisenä julkaistuista liitteistä – runsaasti hupaisia munauksia, jotka osoittavat, ettei kukaan lukenut läpi viimeistä versiota artikkelista, mikä on nykyään valitettavan tavallista.), todettakoon tässä osittaisena vastauksena provokatiiviseen otsikkooni, että en minä suinkaan pidä tietokonesimulaatioita kraatterien synnystä turhina. Päinvastoin, ne ovat erittäin merkittävä apuneuvo yritettäessä ymmärtää äärimmäisen monimutkaista prosessien sarjaa, joka ei kunnolla laboratoriossa tutkittavaksi taivu.

Esimerkkinä mielestäni erittäin ansiokkaasta simulaatioihin perustuvasta tuoreesta tutkimuksesta, joka myös käsittelee törmäävän kappaleen kohtaloa kraatteroitumisprosessissa, mutta josta ei ole pahemmin kylillä huudeltu, mainittakoon Meteoritics & Planetary Science -lehden toukokuun numerossa ollut Ross Potterin ja Gareth Collinsin oivallinen artikkeli. Siinä tutkittiin eri tekijöiden vaikutusta törmäävän kappaleen säilymiseen sulamatta tai höyrystymättä, ja verrattiin tuloksia Morokwengin kraatteriin ja sen synnyttäneeseen meteoriittiin, jonka sulamattomia kappaleita yllätten löydettiin keskeltä törmäyssulaa. Tekijät, joilla Morokwengin meteoriitin säilyminen selittyy, ovat hidas törmäysnopeus, alhainen huokoisuus, pitkänomainen muoto, ja jyrkkä törmäyskulma. Pojasta on selvästi polvi parantunut, sillä kirjoittajista Collinsin väitöskirjatyön yksi ohjaaja oli Yuen tutkimuksen taustapiru ja mediassa paistattelija Jay Melosh, ja Potter puolestaan teki väitöskirjansa Collinsin hellässä huomassa. Sivumennen sanoen, Morokwengin synnyttäneen kappaleen löytöartikkelin ykköskirjoittaja Wolf Maier päätyi sittemmin kaikista mahdollisista paikoista Oulun yliopiston geologian professoriksi.

Varsinaiseen asiaan palatakseni, simulaatioiden tekijöiden pitäisi aina muistaa vanha viisaus, ”garbage in, garbage out”. Jos siis mallin peruslähtökohdat ovat älyttömät, saadaan myös älyttömiä tuloksia. On toki paljon mahdollista, että Yue kumppaneineen on lopulta oikeassa, en yritäkään kiistää sitä. Tuurillaan ne laivatkin seilaavat. On vain kovin vaikea nähdä järin suurta merkitystä tutkimuksessa, jonka yksi perusolettamuksista ei vastaa todellisuutta (Oliviini ei ole mitenkään poikkeuksellinen mineraali Kuun pinnalla), jonka yhtä perusmekanismia ei edes yritetä selittää (Mikä pitää raskaamman oliviinirikkaan materiaalin kellumassa kevyemmän anortosiittisen materiaalin päällä koko äärimmäisen turbulenttisen kraatterin synnyn ja muokkautumisen ajan, ja estää sitä sekoittumasta törmäyssulien ja breksioiden kanssa?), ja jonka ennusteita ei edes yritetä verrata havaintoihin. Pistää kieltämättä vaan vähän vihaksi, että iso nimi (Melosh) isosta yliopistosta (Purdue) takaa julkaisun isossa pintaraapaisulehdessä (Nature Geoscience), ja maailma on rähmällään sen edessä, vaikka artikkelin todelliset ansiot ovat hyvin kyseenalaiset, samalla kun kukaan ei huomaa vähän pienempien nimien (Potter & Collins) erinomaista artikkelia yhdessä alan tärkeimmistä täysmittaisia tutkimusartikkeleja julkaisevista lehdistä (Meteoritics & Planetary Science).

Mitä tästä opimme? Emme kai mitään, mutta tulipahan jälleen kerran muistutus siitä, että tiedeuutisointiakin hallitsevat markkinamiehet ja -naiset, eikä sillä, mistä tiedeuutisissa hehkutetaan ja mistä vaietaan ole juuri mitään tekemistä sen kanssa, mikä on oikeasti hyvää tutkimusta.

maanantai 12. marraskuuta 2012

Kadonnutta allasta etsimässä

Kuun geologia on mitä suurimmissa määrin törmäysaltaiden geologiaa. Jos haluaa ymmärtää miksi Kuu on sellainen kuin se nyt sattuu olemaan, täytyy ensin selvittää törmäysaltaiden synty ja kehitys. Mutta mitä sitten, jos koko Kuun geologisen historian mahdollisesti suurin törmäysallas ei olekaan olemassa? Ja nyt taas ehkä onkin?

Englantilainen geokemisti Peter Cadogan esitteli vuosina 1974 ja 1975 ideansa jättimäisestä törmäysaltaasta, joka peittäisi suuren osan Kuun lähipuolesta. Ehdotetun altaan läpimitta oli huimat 2400 km, ja sillä oli jättiläiselle sopiva nimikin: Gargantuan. Altaan länsireunan muodostivat Cadoganin ideassa Oceanus Procellarumin länsiranta, ja pohjoisessa allasta reunusti Mare Frigoriksen pohjoisranta. Muualla Cadoganin allaskandidaatti olikin sitten vaikeammin hahmotettavissa, etelä- ja itäreunojen suunnilleen myötäillessä Oceanus Procellarumin ja Mare Insularumin rantoja.

Walesilainen, mutta enimmäkseen Arizonan yliopistossa työskennellyt Kuun kartoittaja Ewen Whitaker oli Chuck Woodin kertoman tarinan mukaan ehdottanut suunnilleen vastaavaa allasta jo aiemmin, mutta ei ollut koskaan tullut julkaisseeksi siitä mitään. Vuonna 1981 hän kuitenkin julkaisi altaastaan artikkelin, jossa kartoitti altaalle kolme rengasta, mikä on varsin tyypillistä Kuun törmäysaltaille. Koska Oceanus Procellarum kattaa suurimman osan altaasta, antoi Whitaker altaalleen nimen Procellarum. Whitakerin hahmottelemien renkaiden läpimitat olivat 1700, 2400, ja 3200 km. Hiukan yllättäen hän rinnasti suurimman renkaansa Orientalen Montes Cordilleran renkaaseen ja Imbriumin Montes Apenninuksen1 renkaaseen, jotka ovat näiden altaiden topografisia päärenkaita, ja joiden halkaisija yleensä mainitaan altaiden koosta puhuttaessa. Näin tulkiten Procellarumin allas oli huomattavasti suurempi kuin Gargantuan.

Don Wilhelms on eräs kaikkein merkittävimmistä Kuun geologian tutkijoista, ainakin kun puhutaan kaukokartoituksesta. Wilhelmsille Procellarumin allas sopi mainiosti, ja hänen Kuun geologian perusteoksessaan The Geologic History of the Moon (1987) Procellarumin allas oli aivan keskeisessä roolissa etenkin Kuun lähipuolen geologisessa kehityksessä. Monet muut eivät kuitenkaan olleet vakuuttuneita sen paremmin Gargantuanin kuin Procellarumin altaan olemassaolosta. Peter Schultz ja Paul Spudis nostivat kissan pöydälle, ja osoittivat lukuisia aukkoja niin geokemiallisissa kuin topografisissa ja morfologisissa todisteissa, joita näiden jättiläisaltaiden puolesta oli esitetty. Schultz ja Spudis osoittivat, että aivan yhtä vahvoin perustein voidaan sanoa havaintojen selittyvän pelkästään suuren ja geologisesti varsin nuoren Imbriumin altaan vaikutuksilla. Erinomaisessa kirjassaan The Geology of Multi-Ring Impact Basins (1993) Spudis oli jo suoraan sitä mieltä, ettei Procellarumin allasta ollut olemassakaan. Ei sille tukea löytynyt Clementine-luotaimen korkeusmittauksistakaan, joiden perusteella saatiin ensimmäiset modernit topografiset kartat koko Kuusta.

Kuun suuri lähipuolen allas ei kuitenkaan ottanut kuollakseen. Charles Byrnelle ei riittänyt minkäänlainen muunnos Gargantuanista tai Procellarumista, vaan hän toi tarjolle lähipuolen mega-altaan, jolla kokoa on yli 6000 km. Kuututkijoiden suuri enemmistö ei kuitenkaan alkuunkaan lämmennyt tälle ajatukselle.

Nyt viimeisen parin viikon ajan on kuitenkin suuri lähipuolen allas ollut taas tutkijoiden huulilla ja näppäimistöillä. Nature Geoscience -lehdessä julkaistu japanilaisen Ryosuke Nakamuran ja kumppaneiden Kaguya-luotaimen spektrianalyysiin perustuva kiehtova uusi tutkimus väittää, että Procellarumin ympäriltä löydetyt noriittista koostumusta vastaavat signaalit olisivat todiste törmäyssynnyn puolesta. Tätä ajatusta he tukevat mm. sillä, että vastaavia koostumuksia on löydetty myös Imbriumin ja South Pole – Aitkenin törmäysaltaiden ympäriltä.


Missä lienee Kuun suuri lähipuolen allas?

Lähde
Ehdotetun altaan nimi
Keskipiste
Altaan tai sen renkaiden läpimitta
Gargantuan Basin
23°N 29°W
D=2400 km
Procellarum Basin
23°N 15°W
D1=1700 km, D2=2400 km, D3=3200 km
Procellarum Basin
26°N 15°W
D=3200 km
Near Side Megabasin
8,5°N 22°E
D=6026 x 6640 km
Procellarum Basin
15°N 23°Wa
D>3200 km
 aIlmeisesti kyseessä on painovirhe, ja Nakamura et al. tarkoittavat koordinaatteja 23°N 15°W.



Noriitti on kivilaji, jonka päämineraalit ovat plagioklaasimaasälpä ja niukalti kalsiumia sisältävä pyrokseeni. Jos tarkkoja ollaan, spektrikaukokartoituksella ei havaita kivilajeja vaan mineraaleja, joten juuri tämä alhaisen kalsiumin pyrokseeni oli se signaali, jota japanilaistutkijat etsivät ja jonka he siis myös löysivät. Japanilaistutkijoiden ajatuksen mukaan suurimpien altaiden massiiviset törmäyssulakerrokset differentioituvat, jolloin muodostui noriittia2. Myöhemmin tapahtuneet nuoremmat törmäykset paljastivat tämän noriittikerroksen, joka nyt näkyy altaiden ympärillä. Pienemmät altaat, kuten Crisium ja Moscoviense, olisivat synnyttäneet niin paljon vähemmän törmäyssulaa, ettei sulan differentioitumista tapahtunut, eikä näin ollen noriittia olisi päässyt muodostumaan, minkä vuoksi niiden ympäriltä ei noriittisignaalia löydy.


Keltaiset ruudut, siniset kolmiot, ja punaiset ristit osoittavat noriittista koostumusta, ja vihreät neliöt oliviinia, jota suurten törmäysten oletetaan nostaneen Kuun vaipasta. Kuva: Nature Geoscience / Nakamura et al. (2012).

Kuun alakuoren oletaan yleisesti olevan koostumukseltaan noriittinen. Imbriumin altaan synnyttänyt törmäys rouhaisi reippaasti alakuorta, joten noriittiskoostumuksista Imbriumin sulaheittelettä löytyy kaikkialta Kuun lähipuolelta. Itselleni yksi suurimmista japanilaistutkimuksen ongelmista onkin, mihin Procellarumin allasta välttämättä tarvitaan, kun Imbrium joka tapauksessa levitti noriittiskoostumuksisia kiviä yltympäriinsä, eikä viisaammiltakaan ole hirvittävän myönteisiä lausuntoja korviini toistaiseksi sattunut. Kuten odottaa sopikin, Paul Spudis ei blogissaan edelleenkään lämmennyt ajatukselle Procellarumin altaasta. Toinen erittäin ahkera Kuu-valistaja, Chuck Wood, piti kirjassaan The Modern Moon (2003) ovea varovasti raollaan Gargantuan/Procellarum-hypoteesille, ja varovaisen myönteisellä kannalla hän on edelleen.

Vaikkei todella suurta törmäysallasta lähipuolella olisikaan, voi syynä lähipuolen poikkeavaan koostumukseen ja rakenteeseen silti olla törmäyksessä. Peter Schultz ja David Crawford esittivät viime vuonna hypoteesin, jonka mukaan South Pole – Aitkenin allas syntyi vinon törmäyksen seurauksena, ja sen heitteleen ja etenkin Kuun vastakkaiselle puolelle syvälle vaippaan yltäneiden seismisten vaikutusten ansiosta muodostuivat niin koostumuserot kuin Whitakerin kartoittamat harjanteet ja vajoamatkin. Schultzin ja Crawfordin ajatus on varsin villi, ja osittain siksikin niin tenhoava, mutta ainakin periaatteessa se voisi selittää paljon Kuun merkillisyyksistä.

GRAIL-luotaimet Ebb ja Flow tuovat varmasti huikean määrän uutta, mullistavaakin tietoa Kuun syvärakenteesta. Voi hyvin olla, että sen myötä syy Kuun lähi- ja etäpuolien erilaisuuteen selviää, ja saman tien ajatus todella suuresta törmäysaltaasta Kuun lähipuolella voidaan joko hyväksyä tai hylätä. Se on kuitenkin täysin varmaa, ettei uusi japanilaistutkimus jää viimeiseksi sanaksi Procellarumin altaan olemassaolosta. Ja hyvä niin.      


1Koska kyseessä ovat IAU:n hyväksymät nimet, en lähde vuoristojen tai minkään muunkaan nimiä suomentamaan, vaikka sinänsä Kordillieerit ja Apenniinit käypiä nimiä olisivatkin.
2Aivan samoin tapahtuu myös Maassa, tosin yleensä magmaattisen toiminnan seurauksena. Koillismaan ja Lapin kerrosintruusiot ovat mainioita esimerkkejä magmaattisesta differentiaatiosta.